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Zusammenfassung

Applikationen für Augmented Reality und mobiles Virtual Reality (VR) er-
fordern mobiles Pupil Tracking in Head-mounted Displays (HMD). Das ul-
timative Ziel ist die Erhöhung von Immersion in VR Anwendungen. Bisher
existieren für diese Zwecke jedoch noch keine praktikablen Lösungen. Ins-
besondere gehen hohe Kosten für den Aufbau, die unterliegende Plattform
und den benutzten Kameras, einher.

Diese Projektarbeit präsentiert die Umsetzung eines Pupillenerkennungs-
Algorithmus auf einer handelsüblichen mobilen Plattform. In Verbindung
mit einer kostengünstigen Kamera stellt das System eine praktikable Lösung
für mobiles Eye Tracking dar. Der Algorithmus wurde auf die eingeschränk-
ten Hardwarebedingungen der Zielplattform angepasst. Für die mobile
Nutzung wurden Funktionen zum Versand der Ergebnisse über WLAN hinzu-
gefügt. Um die Robustheit des Systems zu optimieren, wurde der Algorith-
mus stückweise erweitert und durch neuen Herangehensweisen verbessert.
Alle Ergebnisse wurden ausführlich getestet und evaluiert. In der abschließen-
den Diskussionen wird auf offene Probleme und das Potential für zukünftige
Arbeiten eingegangen.
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Abstract

Applications of Augmented Reality and mobile virtual reality (VR) need
mobile pupil tracking within Head-mounted displays (HMD). The ultimate
goal is an increase of immersion. However, there are no feasible solutions
for this available. In particular, they often come with increased costs for the
underlying system, the cameras and its surrounding setup.

This thesis provides an implementation of a pupil detection algorithm
ported to a mobile consumer platform. Attached to an affordable camera,
the system is able to simulate the functionality of a pupil tracker. Using this
is a step to a self-built cheap alternative to expensive HMD setups. The al-
gorithm was ported to limited computing constraints of the target platform.
A function to perform remotely over network was introduced, sending re-
sults and calibration data via Wi-Fi. To further enhance the robustness of
the system, parts of the algorithm were modified and new approaches were
tested. All results have been extensively evaluated and compared with the
non-optimized algorithm. In the discussion, open problems are analyzed for
future work.
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Chapter 1

Introduction

Virtual reality (VR) systems are a comparatively old idea trying to increase
immersion and realism for video games, movies and other 3D computer
graphics appliances. The first applications using technologies similar to VR
date back to the 50s. These approaches however have almost nothing in
common with modern trends in terms of size and efficiency. In recent years,
research in this field improved and therefore VR applications flourished,
making development of the first consumer products using these technologies
possible.

Head-mounted displays (HMD), such as the Oculus Rift[Fac15] VR sys-
tem, are an approach to achieve additional immersion. A well working
execution is a big goal for video games, but can also be interesting for inter-
active movies or other applications. A single step to further vastly increase
the immersion of such systems is eye-tracking, or more specifically pupil-
tracking. Using advanced techniques, pupil movements can be projected
into the applications. While it is possible to implement such a system, it
often comes with a high cost for its cameras and surrounding setup. Further-
more, a robust detection uses processing power, which decreases the amount
available for other parts of the system.

On the software-side, detecting the pupil center is one of the most chal-
lenging problems in the field of computer vision. While a near pixel perfect
computation is crucial for VR, algorithms capable of this often are not suit-
able for mobile purposes due to hardware limitations.

This thesis provides a foundation for a future mobile pupil detection plat-
form. Based on a working approach for pupil detection, a modified version
enhanced for mobile computing is developed. Using a low-cost single-board
computer and affordable cameras, the system gets evaluated and tested.
The ultimate goal is an affordable and self-built solution based on consumer
hardware. In future work, the platform can be integrated in head-mounted
displays.

A possible use-case for the system is mobile gaming. The mobile platform
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can send pupil positions in form of coordinates to a client via network. This
client, e.g. a video game running on a smartphone, can directly use the data
without the need of further processing needed. This is a major difference
to other frameworks. These often need the processing power of a desktop
computer connected to the pupil detection device.

The client using pupil information, and the pupil-tracking-device itself
are working separately. Therefore, any device which is able to receive net-
work packages would be to use the pupil information without further changes
to its system. This includes smartphones, handhelds, tablets and other de-
vices which can run interactive applications.

After this introduction, chapter 2 will outline the environment, this
project is built on. First, an overview of the algorithm is presented. Sec-
ond, a suitable mobile platform fitting the project goals is determined and
described. Afterwards, chapter 3 will extensively describe implementation
changes to the base algorithm in terms of porting the algorithm to a mo-
bile platform. The algorithm was ported to a new architecture, faced with
stricter limitations in processing power. Afterwards, networking communi-
cation was included to allow sending results to a remote client. An evaluation
regarding the performance, and analysis of platform limitations concludes
this chapter. Chapter 4 adds new approaches for making the algorithm
more robust. Different techniques and ideas have been tested, implemented
and evaluated to see, whether they improve the overall accurateness of the
system. Lastly, chapter 5 will conclude the thesis by giving an overview of
project results and a prospect to open questions regarding this project.



Chapter 2

Environment

With the goal of developing a mobile pupil detection system, there is a need
of a mobile platform, as well as a robust algorithm.

Mobile platforms generally focus on being lightweight and efficient in
power consumption, due to restrictions in battery size. Therefore, there are
usually heavy limitations on processing power. Hence, a pupil detection
algorithm needs to be efficient enough to process its data in such embedded
conditions, while also being robust enough for the future use cases of this
system.

In Section 2.1, a suitable approach for pupil detection is described. Af-
terwards, 2.2 explains possible choices of mobile embedded systems for the
purpose of building a mobile pupil detection system.

2.1 Pupil detection algorithm

There are multiple ways to approach computer vision and problems sur-
rounding pupil and eye detection. A well-working approach is based on
the algorithm developed in a master thesis by Grogorick[Gro15]. Figure 2.1
shows the basic structure of his approach. It uses pictures of an Infrared-
exposed eye as shown in Figure 2.2 for its calculations.

In a pre-calculated step, the lens is masked out. This is necessary for the
eye only being in the center of calculations. The algorithm often works with
histograms over grey-scale data. Therefore, any dark objects not relating to
the eye or pupil would influence the robustness of its calculations.

The pupil position is approximated by looking for the darkest area in the
picture. This will decrease the area, where future steps of the algorithm need
to search for visual features. The result is used in the pupil visibility test,
which relies on a simple thresholding. It determines whether the previously
approximated area has a chance of having the pupil in it. If it fails, the
algorithm can stop, as it won’t be able to find a pupil in the next steps.

Afterwards, the occlusion test is an advanced two-step metric, which
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decides whether the pupil is clear or occluded. Occlusion can occur in case
of overlaying eye lashes or heavy reflections. For the purpose of this project,
the functionality in this step is not as crucial. In fact, it will be skipped for
performance reasons, as later described in chapter 3.

For a final determination of the pupil, the algorithm distinguishes be-
tween two different methods, depending whether the pupil is occluded or
clear.

The part for occluded pupil detection tries to reconstruct the pupil, even
if major parts of the pupil are not in the visible frame. This is the case for
bad angles or if the user is partly blinking. As it is skipped in the modified
version of the algorithm, it won’t be explained in detail.

The other part of the algorithm designated to clear pupil detection will
first filter out reflections and noise. Afterwards, there is a thresholding to
further determine the darkest area in the frame. The OpenCV command
findContours will search for a connected black polygon within the resulting
image. Resulting points are then mapped to an ellipse. The center point of
the ellipse is reported as the pupil position.

It is important to notice, that the algorithm has some major limitations,
when it comes to overly dark eye lashes. This is a problem when people use
mascara.

2.2 Platform

When choosing a suitable platform for this project, it is important to eval-
uate options based on various target goals. In a mobile context with no
attached cables, a system which is capable of running by battery power is
advisable. Furthermore, the weight of the setup needs to be reasonable.

Due to this, embedded systems or single-board computers are the only
suitable candidates. One or two consumer cameras need to be connected
via USB or equivalent to input video data. Additionally, the algorithm is
based on OpenCV. Therefore, a full operating system with USB drivers
and a full development environment is almost necessary. Consumer level
hardware and being affordable also excludes self-built hardware solutions.
Hence, embedded systems seem not to be a feasible option.

2.2.1 Raspberry Pi 2

For the purpose of porting the algorithm to a mobile system, the Raspberry
Pi platform turned out to be a suitable match. In a mobile context, the
target is to minimize processing power, power usage and cost of the platform.

The Raspberry Pi platform[Fou15] (Figure 2.3) is a single board com-
puter in the size of a credit card. It got popular for various home-built
solutions such as home servers, media players, but is also used also in ed-
ucation. Due to a low cost, abandoning unnecessary extras and being pro-
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Figure 2.1: Flowchart of the pupil detection algorithm

duced in high numbers, it got a cheap solution for various mobile computing
purposes.

The current generation Pi 2 Board B features a 900 MHz quad-core
ARM Cortex-A7 processor and 1 GB of RAM. It supports 4 USB 2.0 devices,
which is enough for two external webcams and a Wi-Fi dongle. An ethernet
port can be used for testing. The system is powered by a 5V micro USB
port. Therefore, combining it with mobile batteries suited for smartphones
or similar is possible. The platform can run any ARMv7 compatible Linux
distribution. Beside Raspberrys in-house solution Raspbian based on Debian
Linux, there are various other options. This project has been developed on
top of ArchLinux ARM. It is a rolling distribution for ARM platforms based
on the popular ArchLinux. Compared to Raspbian, there is a higher amount
of installable precompiled packages, such as a binary version of OpenCV.

For video capturing up to two PlayStation (PS) Eye webcams were used.
The PS Eye cameras can capture up to 120 frames per second at a resolution
up to 640x480. The raw data has a YUYV format. It is shipped with an
IR filter which can be removed by opening its case. It has a reasonable
low latency, which makes it a good candidate for affordable eye-tracking
applications.
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Figure 2.2: Random frame of an Infrared-exposed eye. The input to the
algorithm looks similar to these frames. The output are coordinates of
the center of the pupil. The left frame is a very clear example. In the
middle frame, there are bad lighting conditions and it is partly occluded
by lashes. The right shows a frame in very bad conditions, with the pupil
almost completely occluded by eye lashes.

Figure 2.3: The PCB of a Raspberry Pi 2 Model B. On the right, the USB
2.0 and ethernet port are visible. On the top, there is a serial port which
is not used in this project. In the bottom area, there is an HDMI slot and
the power connector. On the left, there is a MicroSD card providing the
operating system.



Chapter 3

Porting to mobile platform

The base algorithm was designed to work on Desktop computers running
state-of-the-art Intel x86 hardware and the Microsoft Windows operating
system. To support the Raspberry Pi 2 platform, various changes are made
to port it to Linux and ARM. On top of it, current desktop processors have
a vast difference in terms of performance, compared to mobile platforms.
The original algorithm was not designed with strict hardware limitations in
mind. Due to this, parts of the algorithms have been rewritten or removed
to ensure a calculation in real-time, even on the much slower processor.

Additionally, a network model has been added to communicate to an
arbitrary client. This allows transfer of computed data to another platform,
such as a video game or VR application.

In section 3.1 all changes made to the implementation are explained
exhaustively. Later, section 3.2 evaluates performance gains in modified
versions of the algorithm. Finally, section 3.3 will discuss current limitations
of the port, which are due to the architecture of the hardware.

3.1 Implementation

The basic architecture is a classical client-server system. The server is the
mobile pupil detection system: a Raspberry Pi 2 with up to two connected
PlayStation Eye webcams via USB 2.0.

It is connected to an arbitrary client via network. The client could be
a game, a game engine or a virtual reality application. For testing, the
client is a simple console application receiving the computed results and
communications with the test system.

For performance reasons, the server needs a variety of implementation
changes in comparison to the base algorithm.
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3.1.1 Performance

The platform features an 900 MHz quad-core ARM Cortex-A7 processor
with 1 GB of RAM. For the purpose of calculating two eyes in parallel, each
frame has two cores available.

The ARM architecture uses the NEON instruction set for high perfor-
mance computations. As the platform has no GPU acceleration, solutions
based on CUDA or OpenCL are not available.

To gain the necessary speed to run the algorithm on a restricted platform,
several changes to its implementation have been made.

Basic optimizations Various parts of the base code consists of inefficient
code, such as loops, memory-inefficient structures and similar. These parts
have been rewritten or unrolled, as possible.

Math operations The gcc compiler for ARM tends to use badly opti-
mized variants for common C math library commands. Operations such
as sqrt(), pow() and others were substituted with own implementations us-
ing ARM-compatible assembler instructions. This gives a big performance
difference compared to non-optimized operations.

The new commands sometimes tend to be less accurate, often calculating
with float instead of double values. This can introduce small jitter. However,
it does not change critical parts of the calculations.

OpenCV 3.0 Slight changes to the implementation has been made to
achieve a compatibility to OpenCV 3.0. The new release includes hard-
ware acceleration for ARM, the so-called NEON instruction set. The Rasp-
berry Pi can not use other forms of hardware accelerations, such as CUDA,
OpenCL or any other framework. The new version should improve calcula-
tion speed without any changes to the algorithms logic.

Removing parts of calculations As previously described, there was
a differentiation between a clear pupil and an occluded pupil part of the
algorithm. This was due to the different visual characteristics in both cases.

However, an analysis with test data showed that for most frames, the
clear pupil part in fact does have reliable enough results. While there are
frames, for which this does not hold true, these frames often can’t have good
results with either part of the algorithm. Thus, a design decision was made:
For frames, where precise robustness can’t be satisfied anyhow, performance
is more important than possibly rescuing bad results.

The metric for detecting which part of the algorithm should be used is
quite slow. It uses filters and other operations, which are not well optimized
for ARM. This results in the decision-making step being a major bottle neck
of the system.
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Figure 3.1: Flowchart of the modified algorithm

This problem has been avoided by skipping the decision-making step and
calculating every frame with the clear pupil part of the algorithm. The flow
of the algorithm is described in 3.1. Grey parts of the algorithm are not
used anymore. Green boxes are additions by this project. The lower part of
the figure includes modifications of chapter 4.

Of course, this change is a trade off between robustness and performance.
As the decision metric in particular being a bottle-neck, the change was
negligible. This is visualized in figure 3.3.

Region of interest approaches The base version of the algorithm uses
masking to decrease the amount of calculations. However, loops are still run
through completely, even if only a very small part is masked in. To increase
performance vastly, the algorithm was changed to calculate based on resized
images rather than masking.
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Multithreading The algorithm is implemented in a serial manner, which
makes parallelization not feasible without major changes of its logic. It
would be possible to pre-calculate filters for next steps of the algorithm.
However, additional workload for creating threads and transferring data
between threads counter any gains in performance.

As two eyes are processed in parallel, two cores can be used by designat-
ing one thread to each eye. Furthermore, the v4l2 driver processing webcams
in Linux also uses additional processing power, assigned by the operating
system. Thus, around three of four cores are working to their capacity.

Carrying over information from last frame There was an implemen-
tation, where the information of the previous frame was used to skip pre-
calculations such as the pupil approximation. However, saccades creates
issues with this approach. Furthermore, the increase in performance was
not promising enough for further analyses.

In this area, there is possibility for further research. The current algo-
rithm treats every frame as an entirely new calculation, which is necessary
for saccades to be detected sufficiently. A more extensive approach could
introduce advocating previous results as approximation of following frames.

3.1.2 Networking

To communicate between the mobile platform and a client, which uses
the detected pupil data, methods for network communication were imple-
mented. The popular library zeromq[iC15] uses a message-based networking
approach. Additionally, a serializing library called MsgPack[Fur15] encodes
the content of packages. Both libraries have bindings to several languages,
hence making clients in multiple languages possible.

The server opens two ports per eye. On one port, a publishing service will
send out detected pupil data after each frame in form of an serialized string.
Optionally, the image data can also be send to the listeners. However, this
can reduce overall performance in the network as well as the performance
of the server, as serializing OpenCV frames takes additional time. On the
second port, the server listens to commands, such as changing parameters.
This can be used to calibrate the algorithm remotely.

It is be possible to split up both eyes to different Raspberry Pis, and the
client connecting to two different addresses.

The client subscribes to the publishing service of the server. It will reg-
ularly receive detected pupil positions in form of coordinates in a serialized
string. Optionally, the client can open a second port to send commands to
the server, such as parameters for calibrating data.

Clients in both C++ and Python were implemented. This shows, that
clients and servers with different programming languages are compatible to
each other.
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3.2 Evaluation

For the purpose of evaluating the speed, two test systems were used.
First, the Raspberry Pi 2 Board B, running Arch Linux ARM in a current

version from August 2015. It ships with OpenCV 2.4.11. For testing the
speed differences of OpenCV 3.0.0 regarding NEON support, a self-compiled
version has been added to the system.

Second, a MacBook Pro with Intel i7 8-core system with 2,5 GHz and
16 GB RAM, running a virtual machine in VMWare Fusion 7.1.2 with Arch
Linux 64-bit in a current version from July 2015 and OpenCV 2.4.11.

For checking the capabilities of the platform in conditions similar to a
real HMD setup, two PlayStation Eye USB 2.0 cameras were added. Un-
fortunately, there is currently no custom HMD setup using IR available.
This renders frames captured by the webcams not processable. Hence, pre-
captured data were used for other parts of the algorithm analyses.

3.2.1 Algorithm performance

In figure 3.2, there are results of performance analyses. It shows the average
calculated frames per second (fps) over a time of approx. 1300 frames. As
the input data is pre-recorded, it is possible to gain more frames than a
common 60 fps camera. In this case, it would result in the webcams being
the bottleneck rather than the algorithm itself. However, a higher fps value
can result in lower latency and thus a better perception for the user of the
VR system.

Furthermore, figure 3.3 shows a profiled overview of the algorithm. This
indicates, which parts of the algorithm are a bottleneck, when it comes to
processing time.

Before vs After The modified version shows an increase to up to 24 times
as fast processing speed. Even though parts of the algorithm are missing, the
precision of the results doesn’t lose as much. A comprehensive robustness
analysis is given in chapter 4.

In raw data, the Raspberry Pi 2 is capable of rendering 96 frames per
second (fps). This also means it is sufficient for real-time processing video
data. Furthermore, this tops fps of regular video capture devices. The
average latency for an input frame to be processed is down to 10 ms.

Two eyes A test using two parallel computations, simulating two separate
eyes, has been evaluated internally. There is no decrease in performance for
a single eye, which is due to the multi-threaded approach.

OpenCV 2 vs OpenCV 3 OpenCV 3 promised hardware-acceleration
for all basic functions for NEON. The difference between ARM compiled
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Figure 3.2: Total performance evaluation. This indicates the average
amount of frames which are processed per second (fps). A real-time per-
formance is reached at 60 fps. A higher fps than the webcam can reduce
latency, enhancing the users perception. OpenCV 3.0 has not been tested
on Intel x86 platforms, as the changes are only relevant for ARM-based
systems.

OpenCV 2.4.11 and 3.0 is around 9%.

This new version is not yet available in binary form for most linux dis-
tributions (as of August 2015). The changes to the source code to support
OpenCV 3.0 were marginal. Therefore, an upgrade to 3.0 for ARM-based
platforms seems worth it.

3.2.2 Camera performance

The current version uses one CPU core per eye. This leaves two cores open
for the operating system. This is advisable, as the v4l2 driver for the PS Eye
webcams also uses a high amount of computing power to process requests.

As mentioned, the tests in subsection were evaluated with pre-recorded
data. This was necessary, because there is currently no IR setup available.
However, there are no major differences when it comes to processing other
video sources. Therefore, the system performs similarly when completely
working on webcams.

Unfortunately, as it turned out, there are bandwidth bottlenecks regard-
ing the available USB host interface bandwidth on the Raspberry (Section
3.3). Due to this, the operating system can’t deliver the expected frame
rates. This is not due to the algorithm, which could process frames faster,
but hardware limitations (Sec. 3.3).
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Base Modified

pre-processing 2.4 ms 2.4 ms
extract pupil region 95.3 ms 7.2 ms
visibility test 0.6 ms 0.6 ms
occlusion test 94.0 ms -
detect (clear / occluded) 11.0 ms / 73.6 ms 3.4 ms

total (clear / occluded) 203.3 ms / 265.9 ms 13.6 ms

Figure 3.3: The average computation times of steps in the algorithm, based
on a small selection of frames. This shows possible bottlenecks when it
comes to processing speed. The time is measured on the Raspberry Pi 2.
These numbers are higher than figure 3.2 suggests. Debug output adds an
almost static impact of about 3 ms, which results in a performance decrease
of up to 2% to the base algorithm and up to 32% to the modified algorithm.

3.3 Hardware limitations

In the current setup, the Raspberry Pi is not able to fully process two
external cameras at full speed and a Wi-Fi dongle at the same time. This
seems either due to USB 2.0 stack limitations of the platform, or processing
power, as the v4l2 driver almost uses a full CPU core for processing its data.

By USB 2.0 specification, the Raspberry Pi 2 has a theoretical bandwidth
of approx. 60 MB/s. However, its operating system running on MicroSD
card as well as other devices such as Ethernet share a single bus. This results
in a reduced net performance for additional devices.

The PS Eye camera transfers all frames in YUYV data, which results in
2 B per pixel of raw data. In the maximal resolution of 640x480, this results
in 35 MB/s of raw data per connected camera. Unfortunately, the PS Eye
camera does not seem to support other modes than YUYV, as the Linux
v4l2 driver emulates every other option in software. There are currently
no speed-optimized drivers available for Linux, as compared to the Code
Laboratories Eye driver for Windows[Lab15].

A single camera can process around 50 fps without any frame drops.
However, connecting a second camera decreases the available bandwidth and
thus performance of each camera. Due to this, the driver options need to
be scaled down to 25-30 fps per eye to process the frames correctly without
frame drops.

A solution to this might be a switch to another single-board computer
with better USB throughput or general performance. Other options would
be Intel Atom-based MinnowBoard[Com15] or Korean ODROID[Har15],
which both feature USB 3.0 ports as well as an updated CPU. However,
these platforms often double or triple the price of a Raspberry Pi 2, making
the setup less affordable.



Chapter 4

Enhancing robustness

Computer vision applications like this can be vulnerable for slight variations
in between frames. This is due to simple miscalculations regarding the
algorithm, but can also happen in cases of noise, bad lightning and other
obstacles.

In one use-case of virtual reality and video games, eye movements can
directly control what the user will see. This changes the perception of the
game. Virtual reality is prone to nausea and seasickness as analyzed by
LaViola[LaV00]. A high jitter and jumping in between frames will pre-
sumably increase these effects, if they do not correctly respond to the real
movements of the users eyes. Therefore, robustness of the computations is
an important constraint when keeping in mind future applications of the
system.

Additionally, the base algorithm has severe problems with dark eye-
lashes. This restriction is especially noticeable in case the user wears cosmet-
ics like mascara, severely reducing the amount of correctly detected frames.

This chapter will start with a discussion of tested approaches in Section
4.1. These approaches have been implemented and compared with the base
algorithm in terms of speed and robustness. In Section 4.2, an evaluation
will show a comparison to the base algorithm. The chapter is concluded with
Section 4.3 showing a glance at other promising approaches, which have not
been tested yet due to time limitations.

4.1 Various approaches

After optimizing the base algorithm and ensure it working efficient on the
Raspberry Pi 2 platform, which was the main goal of the project, several
approaches have been tested to further enhance the robustness of detected
pupil positions.

This however often comes in hand with additional computations and less
approximations for certain parts of the algorithm. Therefore, it results in a
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trade off between performance and robustness. This is especially critical for
a mobile platform.

Due to this, this section is a mixture of possible features, ideas for future
work and already implemented ideas.

4.1.1 Gradient changes to optimize pupil position

In the implementation of the base algorithm, small changes in noise can often
result in pixel derivations in between multiple frames, making the calculated
pupil center jitter or move, even in time of no gaze movements.

Similarly other common approaches (Timm et al.[TB11], Wisniewska et
al.[WRK14], Zhu et al.[ZMRW99]), gradient changes of the pupil in contrast
to the iris and sclera were analyzed. Their approaches however commonly
use upper-body pictures of people or pictures of heads, having a much lower
resolution of the eye. This vastly decreases the amount of pixels of the
visible eye, and thus the need for accuracy for near-pixel perfect results. It
also reduces problems regarding eyelashes and small reflection in the eyes,
which only have a minor impact on the visual data in such a resolution.

In well lighted frames, an approach like these work remarkably well.
The corner of the pupil can be found by finding gradient changes in all
directions from an arbitrary point inside the pupil. When finding multiple
corner points of the pupil, a new ellipse can be calculated which is more
robust than the base algorithm proposed in [Gro15].

However, in badly lighted frames the detected positions can be quite
off. Often, gradient changes along the pupil, iris and even sclera are very
small, making them hard to detect reliably. Due to this, the contrast needs
to be enhanced vastly for the approach to work efficient enough. Noise
and reflections can furthermore change visual features in-homogeneously,
resulting in deformed ellipses.

A downside of a simple high contrast conversion of frames is the loss of
information, most drastically seen in badly lit frames. An example is shown
in Figure 4.1. The upper line of pictures show the base algorithm approach
in green and the gradient approach in blue. The left and middle frame show
good and acceptable results, while the right one shows a frame, where both
approaches fail. The gradient can not be determined correctly due to bad
lightning conditions in the right half of the iris.

To solve these problems, popular approaches for local histogram equal-
ization, like CLAHE as proposed by Pizer et al.[PAA+87] have been tested.
Unfortunately, results were not as promising. The main issue for non-
optimally lit frames persists. In average it results in similar or only slightly
better conditions than simpler contrast changes. However, CLAHE and
local histogram equalizations are slower slower.

On top of that, an approach using downscaled versions of the frame
has been tested. It improves the results regarding noise and small gradient
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Figure 4.1: Gradient approach. Top: The green ellipse is the base algorithm,
the blue one shows the gradient approach. Buttom: Yellow points show
possible candidates for the corner of pupil, the pink point is the chosen
corner point.

changes and generally enhanced robustness of the approach. Naturally, this
technique come in hand with reducing the pixel accurateness of the results.

4.1.2 Kalman filter

To counter-measure pixel derivations and large miscalculations due to spec-
tral light or other disturbances in between close frames, a Kalman filter[Kal60]
has been added.

The Kalman filter is especially designed to remove noise and short-term
errors in series of events, such as a video of frames. The implementation is
straight-forward using 2D input values for each frame. The filter is a post-
procession step before communicating the results to listening clients over
the network. It estimates a new, most likely position of the pupil center,
trying to sort out wrongly detected frames.

This can largely reduce jitter. However, it introduces some latency when
it comes to fast movements like saccades.

4.1.3 Compatibility with dark eye lashes

As shown in figure 4.2, there are major differences in eyes using mascara
compared to those using none. This can be a hindrance for the algorithm.
The dark parts of the eye-lashes are a noise to histograms and gradients.
This leads to bad results and the algorithm often not being able to process
frames.
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Figure 4.2: Test scenes. Left, scene 1: frames of male eye using no make-up
in good/bad conditions. Right, scene 2: frames of female eye using mascara
in good/bad conditions.

Dark eyelashes increase the possibility for the pupil approximation to
fail. This is especially true, if the lens detection did not work well and there
is a fuzzy dark corner. A static region of interest clipping in advance can
prevent such behavior. This is no problem, as the IR lens is static and can’t
move.

To solve these issues, parts of the lens detection have been made restruc-
tured. A simpler thresholding replaced the more error-prone lens detection.

4.2 Evaluation

For evaluation of robustness, two different scenes are used. The first scene
is a male eye without make-up. The second scene features a female eye with
mascara. Figure 4.2 shows a sample frame of each scene. Both scenes were
pre-recorded using an IR HMD setup.

The calculations are measured on a Raspberry Pi 2 Board B, running
Arch Linux ARM in a current version from August 2015 with OpenCV 3.0.0.

In the top of figure 4.3, it shows error histograms of the base algorithm
compared to the most robust modified algorithm. In the bottom, it sum-
marises raw data captured from different versions of the algorithm. M1 is a
version only containing speed changes from 3, including removal of occluded
eye detections, region of interests and simpler lens detection. M2 adds a
Kalman filter. M3 also adds the gradient approach from subsection 4.1.1.

All computed data is compared to ground truth data, measuring the
average mistakes. The sum of distance indicates the total movement of the
eye. This is an important measure. A low total eye movement indicates less
jitter and a calmer movement. This can be a good indication for the users
perception, even if the average error is comparatively worse.

The average fps is measured to see whether changes in this chapter have
a major impact on the performance, running on a Raspberry Pi 2.
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4.2.1 Test scene 1: Eyes without make-up

The modified algorithm is more robust than the base algorithm. The aver-
age mistake in pixels stays competitive while being up to 24 times faster.
After removing the non-occluded parts of the algorithm, the average mis-
take actually vastly decreases. This can be a result of false-positives when
it comes to the decision metric. However, the M1 version introduces a high
amount of jitter, due to being less accurate.

The addition of a Kalman filter could increase users perception by re-
moving unnecessary jitter. Beside a small reduction of robustness, the total
eye movement decreases tremendously.

The gradient approach in particular reduces the amount of false nega-
tively detected frames. This is due to the gradient approach acting as a
fallback method.

4.2.2 Test scene 2: Eyes using mascara

In the second scene, the eyes with mascara are harder for the algorithm to
process. Furthermore, a very high amount of frames are non-optimally lit.
There are reflections of the size of half the pupil, which distract around a
fourth of the frames.

The Kalman filter can reduce a little bit of jitter. However, in scene
2, there is a very high number of saccades. Saccades are too fast for the
Kalman filter to instantly recognize. Therefore, the average error increases,
as the Kalman filter introduces a lag.

Due to the high amount of reflections, the gradient approach does not
work as well as in scene 1. The most right frame in figure 4.2 shows reflec-
tions results in such behavior.

4.3 Other approaches for future work

There are other approaches for detecting exact pupil positions in eye track-
ing, which have not been tested yet. For the purpose of analyzing other
methods for future work, here is a short overview.

Ponz et al.[PVS+11] present an approach using Topography-based de-
tection with multiple different resolution pictures.

Another interesting work by Markuš et al.[MFP+14] proposes an ap-
proach using randomized regression trees to evaluate the position of a pupil.
It is reported to be efficient for real-time usage on mobile devices. However,
it uses an external dataset for training data.
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(a) Test scene 1: Base algorithm
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(b) Test scene 1: Modified algorithm
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(c) Test scene 2: Base algorithm
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(d) Test scene 2: Modified algorithm

Scene 1 (1239 frames) Base M1 M2 M3

eye movement 20 958 79 422 1854 2441
# false pos. 49 4 5 15
# false neg. 174 182 228 91
mean 17.49 7.38 9.09 10.26
std deviation 7.73 6.32 8.99 9.00

fps 4 96 72 45

Scene 2 (1949 frames) Base* M1 M2 M3

eye movement 232 217 58 124 10 220 14 422
# false pos. 254 19 16 26
# false neg. 247 168 192 98
average 258.15 10.57 16.48 24.79
std deviation 1798.03 26.25 32.05 52.77

fps 5 99 64 44

Figure 4.3: Comparison of computed data with ground truth data. In the
top, it shows error histograms. Below, there are tables with raw data. All
values, except frames per second, are measured in pixels. Base is the unmod-
ified version of the algorithm. M1 consists of speed enhancements discussed
in chapter 3. M2 adds the Kalman filter. M3 adds all robustness changes in
this chapter. Eye movement is the total movement of pupil center between
subsequent frames. *In scene 2, the base algorithm produces a segmentation
fault after 1800 frames, which does not occur on modified versions.



Chapter 5

Conclusion

In summary, the speed evaluation in chapter 3 showed the great capabilities
of the algorithm on mobile platforms. It turns out to be fast enough to
operate solely on the device in real time. There are some minor limitations
when it comes to the host platform regarding USB bandwidth. This can
easily be solved by using two Raspberry Pi platforms, one for each eye
separately. Alternatively, other host-platforms can be tested.

As a result, the goal of being able to perform in real time has been met.
This means, the system is capable of calculating more than 60 frames per
second (fps). This speed surpasses usual webcams. It would be possible to
further enhance the speed of the algorithm by applying additional temporal
metrics, skipping parts of the algorithm for subsequent frames. This is not
necessary for real time performance, but could decrease latency. As the goal
was met, the focus of the project shifted to robustness.

Chapter 4 could successfully show an improved robustness of results
in-between different builds of the algorithm. Unfortunately, the gradient
approach has some major problems with reflections, and decreases the per-
formance to a level below 60 fps. Other implementations could vastly de-
crease the jitter and miscalculations while keeping the average mistake to
a minimum. Replacing the lens detection with a static region of interest
approach could solve most major issues for eyes with mascara.

In future work, there can be attempts to further increase robustness in
the gradient approach of Sec. 4.1 for badly lit frames, especially for reflec-
tions. Furthermore, the current system can be integrated with an HMD and
tested with real applications, such as mobile games. For this, the Raspberry
Pi and the cameras need a custom case, a sufficient battery, as well as an
IR light source.
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