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Text-to-Image (T2I) generation
• Recent innovation in Text-to-Image (T2I) generation models
§ Stable Diffusion[1] is one such example

an astronaut swimming 
under the sea

Example of T2I generation using Stable Diffusion

[1] Rombach et al., “High-resolution image synthesis with latent diffusion models”, CVPR 2022.

a hamburger floating 
in the sky

2



How Stable Diffusion works
• Stable Diffusion[1]: Open-source text-to-image generation model
§ Generates images from embeddings of the CLIP text encoder
§ CLIP[2]: Vision & language foundation model
ØConsists of text and image encoders co-trained via contrastive learning
ØSubword tokenization: Tokenizes each word in a text into subwords
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[2] Radford et al., “Learning transferable visual models from natural language supervision”, ICML 2021.
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Problem of T2I Generation Models: Nonword Input
• They generate unintuitive images when input contains nonwords
§ Nonwords ∶= “Nonsense words that have no definition within a language”

[3] Köhler, “Gestalt Psychology”, H. Liveright, 1929.
[4] Goldinger et al., “Form-based priming in spoken word recognition: The roles of competition and bias”, J. Exp. Psychol. Learn. Mem. Cogn., 1992.
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Problem of T2I Generation Models: Tokenization
• Subword tokenization does not work for nonwords
§ It splits nonwords into unmeaningful subwords
Ø“fouse” → ‘f’ + ‘ouse’ (two subword tokens)
ØCf. “house” → ‘house’ (one token)

• Making nonword-to-image generation unintuitive
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Research Goal
• More intuitive nonword-to-image generation
• Approach
§ Replace CLIP text encoder with our new pronunciation encoder
ØDiscard the use of subword tokenization
ØOur phoneme-level tokenization considers phonetic similarity of an input

6

Phoneme-level
Tokenization
§ /ˈ/
§ /f/
§ /a/
§ /ʊ/
§ /s/

Proposed method

Input Generate

More intuitive!

Nonword
/ˈfaʊs/

Generated Image



Proposed Method: Pronunciation-to-Image Generation
• Our framework consists of two modules:
§ Pronunciation Encoder: Pronunciation -> CLIP embedding
§ Image Generator (Stable Diffusion): CLIP embedding* -> Images 
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IPA-based Phoneme Embedding (1/2)
• IPA: “International Phonetic Alphabet”
• IPA chart[5] is used as a source of phonetic relationships
§ Defines phonetic properties of each phoneme/phone in any language
§ Enables computing phonetic similarity

• Compute a magnitude vector for each phoneme

[5] International Phonetic Association, Handbook of the International Phonetic Association: A guide to the use of the 
International Phonetic Alphabet, Cambridge University Press, 1999.
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IPA Chart for Consonants



IPA-based Phoneme Embedding (2/2)
Aim to assign a phonetically continuous token for each phoneme
1. Prepare magnitude vector based on phonetic property
2. Multiply it with a trainable weight matrix
3. Obtain a phoneme embedding reflecting the phonetic property
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Distillation of CLIP Text Encoder
• Distill the CLIP text encoder with text-pronunciation pairs

1. Prepare pronunciation for each text in training data[6]

Ø Use existing pronunciation dictionaries
2. Train a student encoder (IPA-CLIP) to output the identical embedding to 

the teacher encoder with the corresponding pronunciation input

10

[6] Carlsson et al., “Cross-lingual and multilingual CLIP”, LREC 2022.
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• Our framework consists of two modules:
§ Pronunciation Encoder: Pronunciation -> CLIP embedding
§ Image Generator (Stable Diffusion): CLIP embedding* -> Images 
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CLIP Text Encoder Explained in Detail 12
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Pronunciation-to-Image Generation
1. Reconstruct 𝐿×𝐷$%&&'(-dim. embedding from the 𝐷)*+,-dim. one
§ Train a multilayer perceptron

2. Insert it into a pretrained Stable Diffusion model
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Qualitative Evaluations
• Asked English speakers on Amazon Mechanical Turk
§ Two trials with different instructions
§ Trial 1: Choose which images depict similar-sounding words?
§ Trial 2: Choose which images are more intuitive?
§ Prepared 270 questions/nonwords from an English nonword dataset[7]

[7] Sabbatino et al., ““splink” is happy and “phrouth” is scary: Emotion intensity analysis for nonsense words.”, WASSA 2022.
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Results
• Proposed method wins over the comparative method
§ Generated images of the proposed method:
üDepict the concepts of their phonetically similar words more accurately
üMatch human expectations more closely

• Proposed method has a larger gain in Trial 1 than Trial 2
§ Intuitiveness involves more factors other than phonetic similarity
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Trial 1: Contain similar-sounding words? Trial 2: More intuitive?
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Image Generation Example 16

ProposedComparative (Stable Diffusion)

What kind of imagery does “Flike” evoke in your mind?

Visual concept of flying or flight -> Bird
More intuitive!

Seemingly random
Not intuitive



• Pronunciation-to-Image generation robust against nonwords
§ Motivation: More intuitive nonword-to-image generation
§ Approach: Associate nonwords with their phonetically similar words

• Evaluation showed effectiveness of our method over Stable Diffusion
üDepict phonetically similar (similar-sounding) words more accurately
üGenerate images more intuitive to humans

• Future Work
§ Extend to other languages and perform cross-lingual comparison
ØE.g., German, Japanese, and Chinese
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