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ABSTRACT Image captioning is a popular task in vision and language processing, which aims to generate
textual descriptions for images. Previously, it simply used image and text as input with self-attention to cap-
ture global dependencies. Recent research further uses objects detected from the input image, so-called object
tags, as anchor points to ease alignment between image and text with the attention mechanism. However,
they only consider object information in images, while neglecting the actions and object interactions that also
appear in the image, which causes actions not caught properly in image captioning. To tackle this previously
underrepresented dimension of the semantic alignment, we take account of actions on the semantic level.
Specifically, our work focuses on human actions and interactions, which ensures that more salient parts of the
image get captioned. We introduce a new type of tag, called action tag, to anchor the action information. First,
we provide a method for obtaining such action tags using an action detection model which predicts actions in
the image. Next, we leverage these action tags into the captioning model. Experimental results indicate that
the proposed action tags can help learn action semantics and catch the salient actions leading to perceived
improvements in common performance. Experimental results on MS-COCO Karpathy test split show that
the proposed model achieves good scores in BLEU-4 and CIDEr metrics, using action tags as anchors.
Furthermore, the number of action tags (no more than 5) is smaller than that of object tags (commonly more
than 20), which means there is a potential to reduce FLOPs by reducing the total sequence length. It indicates

the potential for efficient reasoning and may be applied to daily activity scenes in the future.

INDEX TERMS Image Captioning, Semantic Alignment

I. INTRODUCTION

Image captioning [1] is a task that describes images with
syntactically and semantically meaningful sentences. It first
needs to visually understand the image and then generate
its visual representation. Next, a language model uses the
visual representation to generate a meaningful and accurate
textual description of the image content. As such, it connects
the fields of Computer Vision (CV) and Natural Language
Processing (NLP).

One of the most significant challenges in image captioning
is achieving an effective representation of the visual con-
tents [2], which can sufficiently connect visual and textual
semantics. Without a suitable representation of the images,
a language model would struggle to generate an appropriate
caption that accurately depicts the image’s content. It is im-
portant to learn a powerful representation for understanding
what the scene is or what happens in it, i.e., visually salient
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objects or actions. An image representation is commonly
produced by an object detector, which represents the objects
of the image with an intermediate embedding. Down-stream
tasks use these representations for various applications, in-
cluding image captioning.

However, there are several issues in existing representation
methods. Although the object features encode the object’s
information, objects appearing in the image usually overlap
making the image representation ambiguous. In addition, they
lack the information of actions and the interaction with other
objects, which limits the understanding of actions in an im-
age. This causes the action information to be ignored in down-
stream tasks, like image captioning. Therefore, it is crucial to
explore better representations and feature fusion techniques
to develop vision-and-language representations within a co-
representation space.

Numerous image captioning methods [3], [4] introduce
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Conventional Image
Captioning Model

A small bird is standing on a
wooden bench.

>
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Object Detector
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(a) Conventional image captioning method [6]

|::> A dog is sitting on a

(b) Recent works [7, 8]: Object tags as anchors (e.g. overlap)

hitting standing

A baseball player is hitting

>

the ball while standing on

[ Image

Action Tags

the field.

Action Detector

(c) Proposed method: Action tags as anchors (e.g. ignored)

FIGURE 1. Image captioning methods.

self-attention mechanisms, such as Transformer [5]. It en-
ables capturing the relationships with attention between text
and image leading to an improved performance. In Fig. 1,
we overview image captioning methods. Most conventional
image captioning methods [6] only directly use the image
features for captioning. The captioning model uses the image
features and leverages self-attention to semantically align
image and text for the captioning process. In the example
in Fig. 1 (a), the model can catch the bird, but might hardly
recognize some important objects, such as the bench which is
largely occluded.

Previous research proposed representative semantic align-
ment to address the difficulties in learning objects [7], [8].
Fig. 1 (b) shows a dog and a couch but it inevitably results in
overlaps among image regions; the visual ambiguities for dog
and couch are not easily distinguishable. They found object
tags [7] can align semantics to reduce such ambiguity and
help to learn object semantics. However, these works have
the limitation that the object tags only represent objects in an
image, and that it neglects the action information, even if they
are visually salient to humans.

In this paper, we improve the idea of semantic alignment
with action tags and propose an action detector to predict
action tags for a given image. Especially for scenes with peo-
ple interacting with objects, only using of object information
limits learning the semantics of actions. Fig. 1 (c) shows the
core idea of the proposed method that leverages the action
tags as anchor points for image captioning. It aims to help
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learn semantics with previously ignored action information.
The generated caption includes proper actions such as hitting
and standing, which is important in a baseball scene and the
proposed method aims to catch such actions in the images.
Furthermore, when we see the word hitting, we can conjecture
that the scene with a person hitting a ball, or when we see
standing, we can reason it related to someone standing, and
so on. Therefore, we infer that the action tags potentially or
implicitly include their object information. We consider that
the action tags have more information than the object tags,
and we can generate better captions with a smaller number of
tags than the object tags used in previous methods.

We use the Transformer to obtain actions for an image first,
but the actions can sometimes not be obtained. To enhance the
capability to detect actions in an image, we further propose
an action detection method by reinforcement learning with a
novel reward defined with the Intersection over Union (IoU)
based on prediction of the ground truth. Further, we propose
an original design to allow the model to predict the action
tags for a given image, by learning directly from its own out-
comes conveniently without external information and making
the reinforcement learning more stable. Finally, we apply
the predicted action tags obtained from the proposed action
detection model to the image captioning task. By using the
tags for the captioning model, we gain a promising increase of
performance thanks to the action tags becoming anchor points
for improving semantic alignment. By leveraging significant
actions from the action tags, the model can better describe
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regions salient to humans, and the generated captions also

show essential action information, leading to performance

improvements in image captioning.
The main contributions of our work are as follows:

(1) We introduce a type of tag called action tag for rep-
resenting the action information to learn cross-modal
representations in image captioning,

(2) We propose an action prediction method with a novel
reward by reinforcement learning to obtain such tags
directly from images,

(3) Moreover, with the proposed action tags, the caption
model shows the ability for catching the action seman-
tics and it effectively reduces the total token length for
efficient reasoning, and

(4) Experiments conducted by combining action tags show
that the proposed model yields promising performance
on common metrics in image captioning.

For the following sections, we first introduce the related
work in Sec. II. Next, we highlight the main idea of the
proposed method with action tags and propose an action
detection model for such action tags in the Sec. III. In Sec. IV,
we show the experimental results and make some compar-
isons and analyses to emphasize the advantages. Finally, we
summarize and conclude the paper in Sec. V.

Il. RELATED WORK

A. IMAGE CAPTIONING

1) Early self-attention approaches

With the rapid development of deep learning, various models
have been proposed. The Transformer model has been pro-
posed by Vaswani et al. in 2017 [5]. It uses an attention mech-
anism to capture long-distance dependencies in a sequence.
Self-attention is an attentive mechanism where each element
of a set relates to all the others. It can be adopted to com-
pute a global representation of each element through residual
connections. Its architecture and variants have dominated
the Computer Vision (CV) and Natural Language Processing
(NLP) fields, among others. The success of the Transformer
demonstrates that leveraging the attention mechanism allows
achieving superior performance for many tasks. Among the
first image captioning models leveraging this approach, Yang
et al. [9] used a self-attentive module to encode relationships
between features coming from an object detector. Later, Li
et al. [10] introduced a Transformer model that incorporates
a visual encoder for region features, along with a semantic
encoder that utilizes external information. Both encoders em-
ploy self-attention and feed-forward layers. The outputs of
these encoders are subsequently fused by controlling the flow
of visual and semantic information. This integration enhances
the propagation of semantic and visual information within the
model. Other works proposed variants or modifications of the
self-attention operator tailored for image captioning. Guo et
al. [11] proposed a normalized and geometry aware version
of self-attention that makes use of the relative geometric
relationships between input objects.

VOLUME 11, 2023

2) Improved self-attention approaches

Huang et al. [12] proposed an extension of the attention
operator, where the self-attention is concatenated with the
queries, then an information and a gate vector are computed
and finally multiplied together. In their encoder, they employ
this mechanism to refine the visual features. Pan et al. [13]
used bilinear pooling techniques in the X-Linear to strengthen
the representative capacity of the output attended feature. As
other self-attention-based approaches, Ji et al. [2] proposed
to improve self-attention by adding to the sequence of feature
vectors a global vector computed as their average. Luo et
al. [14] proposed a hybrid approach that two self-attention
modules are applied independently to features, and a cross-
attention module locally fuses their interactions.

The encoder—decoder paradigm was a common approach
for image captioning in the early days, but current works have
revisited captioning architectures to exploit a Bidirectional
Encoder Representations from Transformers (BERT) [15] ar-
chitecture. Combining an encoder and a decoder into a single
stream is more efficient to build a unified architecture [6],
and it has become a baseline in the image captioning task. It
uses self-attention to encode both visual features and text rep-
resentations where the visual and textual modalities are fused
together. This strategy achieves remarkable performance with
the early-fusion. The unified model can obtain a unified
representation for both image and text, and by integrating
them within a co-representation space, as well as training on
large amounts of image-text pairs, it achieves good perfor-
mance in the image captioning task. The main advantage of
this architecture is that the model fuses both image and text
features, where image and text tokens are early-fused together
into a unique flow, and the representations can be initialized
with a shared semantic space. This contributes to good perfor-
mance and effectiveness in image captioning. Recently, Li et
al. [7] proposed Oscar as a vision-and-language model also
following the BERT architecture, which achieves excellent
performance in image captioning. In addition, they append
object tags to learn the semantic alignment for both image
and text with the unified architecture. The model represents
an input as word tokens, object tags, and image region feature
triplets. The object tags are used as anchors when connecting
image with text, which eases the semantic alignment with
joint representations leading to better representations.

B. OBJECT DETECTION

Object detection models [16], [17] can generate bounding
boxes and labels for the main objects in an image, such
as persons, cars, dogs, apples, etc. Object features can be
extracted from the intermediate layers of the object detection
model. Compared with other Convolutional Neural Network
(CNN) features, the object features provide object-centric
features corresponding to the salient image regions of images
in object-level. Following previous work [17], [18], an object
detection model Bottom-Up [18] was typically used in image
captioning [13] and Visual Question Answering (VQA) [19]
tasks in the early years. It is typically trained with the Visual
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Genome (VG) dataset [20], but cannot show as good quality
as current methods trained on multiple datasets.

Nowadays, an effective object detection model with
ResNeXt-152 C4 [8] architecture (in short, X152-C4) ap-
peared and shows outstanding potential in down-stream tasks.
Compared to previous object detectors [17], [18], this model
is better designed for down-stream tasks and provides out-
standing image features trained on four public object detec-
tion datasets: MicroSoft Common Objects in COntext (MS-
COCO) [21], Openlmages [22], Objects365 [23], and VG.

C. IMPROVING VISUAL REPRESENTATIONS IN IMAGE
CAPTIONING

Deep learning-based models for image captioning typically
consist of two parts: an image understanding module Vision-
Module and a cross-modal captioning module CrossModule.

An image is the input of the VisionModule, and the output
consists of features and tags, where tags are advanced seman-
tic representations of objects, i.e., detected objects, and the
features are the visual representations of object regions from
the image in a high-dimensional latent space. These are input
into the second part: cross-modal unified captioning module
CrossModule, which aligns the representations of image and
text, to make similar semantics into a unified representation.
The aim of this module is to understand the image semantics
and generate a fitting caption.

Most image captioning models have significantly im-
proved the performance of the CrossModule by (1) unify-
ing and achieving remarkable success with the self-attention
mechanism in the Transformer model, and (2) focusing on
pre-training with large-scale text-image pairs. Recent works
usually treat the first visual understanding module Vision-
Module as a black box without any improvement despite the
development of object detection models achieving tremen-
dous success [17], [18]. The visual understanding module
is significant, due to the down-stream tasks based on it to
understand the image content. Thus an object detector for
producing a good baseline with efficient image features needs
to be considered.

Li et al. [7] proposed Oscar with a BERT-like architecture.
It is different from many models only concentrating on im-
provements of the CrossModule for captioning. It shows that
utilizing extra information besides the image features from
the visual understanding part also shows great improvements
in down-stream tasks. They introduced not only image fea-
tures, but also provided the detected objects from an object
detector as tags. These tags serve as anchors and allows better
vision—language representations. As such, not only using the
image-text pair as input, but also the newly introduced object
tags to ease the learning of image—text alignment, improves
the performance on image captioning greatly.

Some works further concentrated on improving the vision
understanding by producing better image features with more
object categories and obtained further improvements in image
captioning. Zhang et al. [8] proposed VinVL following the
idea in Oscar [7]. They introduced a powerful object detector
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capable of extracting better visual features to down-stream
tasks. VinVL concentrates on the object detection model to
enhance the visual understanding abilities, which provides
better representations for images with an improved object
detection model using the ResNeXt-152 C4 [8] architec-
ture. Compared to the previous object detection model [18],
ResNeXt-152 C4 is better designed for understanding im-
age contents and providing a good representation. It is pre-
trained on multiple public datasets with large amounts of
data, consisting of MS-COCO [21], Openlmages [22], Ob-
jects365 [23], and VG [20]. VinVL demonstrates that increas-
ing the quality of image features in the visual understanding
stage leads to a significant increase of performance in image
captioning.

Although both Oscar and VinVL focus on making improve-
ments in the object alignment and show remarkable perfor-
mance, there is a limitation that they only focus on the objects
in images with object tags to represent the object information.
They neglect action information within an image, that is also
a significant part of its semantics. In our work, we extend the
idea of semantic alignment. We improve on the VisionModule
by obtaining the action tags and using them for learning better
semantic representations. With the introduction of action tags,
the model can attend to regions salient to humans, typically
resulting in captions describing actions and interactions im-
portant to images, and thus improving the captioning quality.

Iil. PROPOSED METHOD

This paper extensively investigates the improvement of tags
and extends them to action tags, similar to the object tags
introduced in Oscar [7]. While Oscar focuses on considering
object information with object tags, it does not consider action
information, despite it being important for learning salient
semantics. Our previous work [24] illustrated that the use of
actions tags from text was promising for learning semantics,
but it lacked a feasible method to obtain such tags from
images. As such, there is a need for a method to obtain action
tags from an input image, similar as object detectors do for
object tags.

In this section, we first introduce the preparation of the
ground-truth action tags and then propose a feasible method
to predict such action tags for any given image. For this, we
propose a method for obtaining action tags with reinforce-
ment learning with a novel reward to enhance the capability
for detecting actions for an image. Especially, the proposed
method uses the model’s own prediction as the baseline and
adjusts a policy based on how well it performs compared to
the baseline to improve the stability when training. Finally,
we introduce the usage of the predicted action tags to provide
action information for semantic alignment to enhance the
action information leading to good performance in image
captioning.

A. OBTAINING GROUND-TRUTH ACTION TAGS
For obtaining the ground-truth action tags, we first analyze
the Part-of-Speech (PoS) for each word in the annotated
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Action Detection looking, standing

=

An orange and white cat and beaver looking at
an ear of corn.

A tabby cat looking at a groundhog eating corn.
A yellow cat going after some corn on the cob.
A cat leaning on a box next to a tree.

A large plate of food as two guys are in front
eating.

Model
A :
Action tags
Training data
o looking, eating,
PoS Filtering going, leaning.

Action tag ground truth

FIGURE 2. Data preparation of action-tag ground truth, as well as the idea of obtaining tags from images.

captions for each image. Then, the verbs are extracted as
action tag candidates. An example of this process is shown
in Fig. 2. We consider the extracted action tags as the ground-
truth labels to train a model for predicting the action tags from
images. By predicting the actions in a given image, we can
obtain action tags for image captioning.

B. ACTION-TAG DETECTION

In this section, we will provide detailed explanations on how
to obtain action tags from an input image with the proposed
action detection model. We employ Bidirectional Encoder
Representations from Transformers (BERT) [15] as our Ac-
tion Detection Model to obtain action tags as shown in Fig. 2.
The model combines image and text tokens as input, where
the image tokens consist of a series of object features of an
image, the text tokens are mask tokens, and the output is the
action tags. The architecture of the proposed detection model
is shown in Fig. 3(a). We enrich the action information to
make a detector predict actions commonly used in captions,
thus the ground-truth action tags used as labels for training
the BERT model.

The training process consists of two steps for predicting
action tags. As Step 1, we input image features and combine
them with all action tags for that image as labels. During train-
ing, we mask the tag part with [MASK], and use the cross-
entropy loss for training the BERT model to predict them.
The action detection model is shown in Fig. 3(a). However,
during Step 1, the model might not detect enough action tags,
and in the worst case, even no action might be detected.

To improve the action tag prediction, we introduce the
second training process as Step 2. We utilize reinforcement
learning with an original reward defined by Intersection over
Union (IoU) with the ground truth for further fine-tuning the
model as shown in Fig. 3(b). Since using the result from test-
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ing time as baseline helps reduce variance, improve stability,
reduce fluctuations in gradient update, we define the reward
as an expectation on how good it performs during training
compared to testing (baseline). This reward allows to learn
directly from its own performance from the model conve-
niently. In case the proposed reward is given positive weights,
the samples are encouraged, and otherwise, the opposite.

The following equations show an example of calculating
the IoU from training (receives gradient) and testing time
(does not receive gradient), respectively. For example, sup-
pose that we have the ground-truth action tags, playing, hit-
ting, and holding, and the generated sample w* is playing.
Here, the reward during training is calculated as:

r(w*) = IoU[(playing), (playing, hitting, holding)]. (1)

Meanwhile, the gradient is disabled during testing to make
sure the model does not receive the gradient. Suppose that we
obtain action tag w” as doing, The reward during testing is
calculated as:

r(w’) = 1oU][(doing), (playing, hitting, holding)]. ~ (2)

Since in reinforcement learning, high variance in gradient
estimates can lead to unstable policy updates, a baseline
is introduced to reduce variance and improve the stability
and efficiency. Thus, we define the reward r that aims at
predicting action tags by reinforcing the better-than-expected
outcomes and penalizing worse-than-expected outcomes to
make the training process more stable as:

r=rw')— r(wb). 3)

In this example, since the reward is positive, it contributes to
predict better action tags. The training is performed to opti-
mize the model parameters to minimize the negative expected
reward as:
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(a) Step 1: Training with cross-entropy loss.
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(b) Step 2: IoUs in reinforcement learning. (1) shows the testing time
(does not receive gradient), and (2) shows the training time (receives
gradient). Utilizing (1) and (2) makes training more stable.

FIGURE 3. Architecture of the proposed action detection model.

Transformer Blocks

[[CLS]][ The ][[MASK]][ are ][[MASK]][baseball][

][playing][ hitting ][ holding ][

] [regionl ] [regionz]

Text

Action Tags

Image Features

Action Detection Model

FIGURE 4. Architecture of the proposed captioning model. Action tags used here are obtained from the prediction model proposed in Sec. IlI-B and

Fig.3.

L(0) = ~Eusp, [(r(w') — r(w")) Vo log,,(w)]. 4

C. IMAGE CAPTIONING ARCHITECTURE

In this section, we apply the action tags predicted in Sec. I1I-B
for image captioning. We replace the object tags in VinVL [8]
with action tags and input both action tags and visual features
as the visual representations into the Transformer-based cap-
tioning model [8].

For pre-training, we choose the recent VinVL model and
directly use its pre-trained base model. We do not need to
retrain the model, which greatly reduces the cost of training,
and focus on the fine-tuning process. Instead of using object
tags, we introduce action tags. We use the action tags as
anchor points to align the semantics between image and text.
The captioning architecture is shown in Fig. 4. The input
consists of image features in different regions, action tags,
and a caption. While training, a specific ratio: 15% of tokens
are chosen for masking. Next, we train the network to predict
the masked token.

During training, the captioning model must learn to prop-
erly predict the probabilities of the words to appear in the
caption. To achieve this, the most common training strategy is

6

based on the cross-entropy loss, as well as the reinforcement
learning that allows direct optimization of captioning-specific
non-differentiable metrics. Here, we use the following two
types of optimizations.

1) Cross-entropy optimization

It involves randomly masking a small subset of input tokens
and training the model to predict the masked tokens relying
on the rest of the unmasked tokens, such as both previous
and subsequent tokens. This approach enables the model to
utilize contextual information to infer the missing tokens,
contributing to the development of a robust representation. It
is important to note that this strategy exclusively focuses on
predicting masked tokens, overlooking the unmasked ones.
Many studies have applied this strategy to image captioning
models. The caption model aims to predict the next word
given the previous words and input image. The cross-entropy
loss is defined as:

T
£CE:_Zlogp(wt‘WhWZ,"awtfl;l); (5)

t=1

where w; is the true word at timestep #, wy, ..., w;— are the
previous words, / is the given image, and T is the total length
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of the caption.

In the context of cross-entropy loss, the training objective
is to minimize the negative log-likelihood of the current word
given the preceding ground-truth words. The loss operates at
the word level, aiming to optimize the probability of each
word in the ground-truth sequence. However, it does not
account for longer-range dependencies between the generated
words. The conventional training setting with cross-entropy
also grapples with issues stemming from the mismatch be-
tween the distribution of training data and the model’s pre-
dictions.

2) Reinforcement learning

Due to the limitations of word-level training strategies ob-
served, a significant improvement was achieved by applying
reinforcement learning [25] for training image-captioning
models. Within this framework, the image-captioning model
is considered as an agent with its parameters defining a policy.
At each time step, the agent executes the policy to choose an
action, specifically predicting the next word in the generated
sentence. Upon reaching the end of the sequence, the agent
receives a reward, and the aim of the training is to optimize
the agent parameters to maximize the expected reward. Many
works embraced this paradigm and explored sequence-level
metrics as rewards. The most widely adopted strategy, Self-
Critical Sequence Training (SCST) [25] introduced by Rennie
et al. involves utilizing the CIDEr score [26] as the reward due
to its stronger correlation with human judgment.

During inference, we first encode the image regions, ac-
tion tags, and a special token [CLS] as input. Following the
approach by Zhang et al. [8], the model starts the generation
by feeding in a [MASK] token and sampling a token from the
vocabulary based on the likelihood output. Next, the [MASK]
token in the previous input sequence is replaced with the
sampled token and a new [MASK] is appended for the next
word prediction. This iterative process continues until the
model outputs the [STOP] token, signifying the completion
of the generation.

IV. EXPERIMENTS
A. SETTINGS
1) Dataset
Datasets should reflect the characteristics of the task, en-
compassing current challenges. They should contain a large
number of generic-domain images, each consisting of one
or multiple captions. Early image-captioning methods [27],
[28] were commonly trained and tested on the Flickr30K [29]
dataset consisting of images collected from the Flickr Web-
site!, containing daily life activities, events, and scenes, each
image paired with five captions. However, the number of
images is relatively small and is not considered sufficient
nowadays.

Currently, the most used dataset is MicroSoft Common
Objects in COntext (MS-COCO) [21], which consists of com-

Uhttps://www.flickr.com/photos/tags/website/ (Accessed: Jul. 26, 2025)
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plex scenes with people, animals, and common daily objects
in the images. It contains more than 120,000 images, each
annotated with five captions, divided into 82,783 images for
training and 40,504 for validation. For ease of evaluation,
most papers follow the splits defined by Karpathy et al. [30],
where 5,000 images of the original validation set are used
for validation, 5,000 for testing, and the rest for training.
Our experiments are also conducted on the Karpathy split for
comparison. The ground-truth action tags are extracted from
the annotated captions with the Natural Language ToolKit
(NLTK) [31] which results in more than 8,700+ categories.
Each image contains 3.6 action tags on average. Moreover,
the dataset has also an official test set, composed of 40,775
images paired with 40 captions each, and it can be evaluated
on the public server’s leaderboard”. We use this setting for the
sake of easy comparion with other research.

2) Comparison Methods

‘We compare the proposed method to recent image-captioning
methods. The first method for comparison is the traditional
Convolutional Neural Network (CNN)-Recurrent Neural Net-
work (RNN) based method [32]. As attention-based meth-
ods, [18] enables attention to be calculated at the level of
objects with salient image regions, and [13] relies on spe-
cific attention mechanisms for multi-modal reasoning and
leverages both the spatial and channel-wise attention to cap-
ture inter-modal interactions. Although an advanced attention
mechanism is used, the semantic alignment between image
and text is not considered. For this, semantic alignment-
based methods have achieved remarkable success recently.
Oscar [7] and VinVL [8] use object tags for aligning seman-
tics. These methods not only use the attention mechanism,
but also use the semantic alignment for learning good co-
representations. By leveraging this, the model can learn the
semantics which exist in both image and text. Similar to
object tags for semantic alignment, we propose action tags, so
we explore the semantic alignment conducted with the action
tags. We also compare the use of the object tags with the use
of action tags.

3) Metrics

First, we evaluate the image-captioning performance follow-
ing existing works with metrics designed for Natural Lan-
guage Processing (NLP) tasks. The BiLingual Evaluation
Understudy (BLEU) score [33] and the Metric for Evaluation
of Translation with Explicit ORdering (METEOR) score [34]
were originally introduced for machine translation. BLEU
is based on n-gram precision. It compares n-grams of the
candidate with those of the reference translation and count
the number of matches; The more they match, the better the
candidate translation is. In general, n-grams is set to n = 4.
METEOR [34] favours the recall of matching unigrams from
the candidate and reference sentences in their stemmed form

Zhttps://codalab.lisn.upsaclay.fr/competitions/7404 (Accessed: Jul. 1,
2025)
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TABLE 1. Performance with cross-entropy optimization on the MS
COCO [30] Karpathy test split compared with the recent methods.

TABLE 2. Performance with CIDEr [26] optimization on the MS-COCO [30]
Karpathy test split compared with the recent methods.

Methods BLEU-4 METEOR CIDEr SPICE Methods BLEU-4 METEOR CIDEr SPICE
RFNet [32] 35.8 274 112.5 20.5 RFNet [32] 36.5 27.7 121.9 21.2
Up-Down [18] 36.2 27.0 113.5 20.3 Up-Down [18] 36.3 27.7 120.1 214
X-Transformer [13] 37.0 28.7 120.0 21.8 X-Transformer [13] 39.7 29.5 132.8 23.4
X-LAN [13] 38.2 28.8 122.0 219 X-LAN [13] 39.5 29.5 132.0 234
Oscar [7] 36.5 30.3 123.7 23.1 Oscar [7] 40.5 29.7 137.6 22.8
VinVL [8] 38.2 30.3 129.3 23.6 VinVL [8] 40.9 30.9 140.6 25.1
Proposed 38.3 30.4 129.8 234 Proposed 41.0 30.8 140.8 25.0

and meaning. The Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) score [35] is designed for summariza-
tion, which considers the longest subsequence of tokens in
the same relative order, possibly with other tokens in-between
that appear in both candidate and reference captions. The
above metrics can be used as image captioning metrics, but
some papers only use part of them for evaluation.

Later, metrics specific to image captioning have been pro-
posed. The Consensus-based Image Description Evaluation
(CIDETr) score [26] is based on the cosine similarity between
the Term Frequency-Inverse Document Frequency (TF-IDF)
weighted n-grams in the candidate caption and in the set of
reference captions associated with the image. It considers
both precision and recall. The Semantic Propositional Image
Caption Evaluation (SPICE) score [36] considers matching
tuples extracted from the candidate and the reference in scene
graphs. It favours the semantic content rather than the fluency.

B. RESULTS

1) Comparison with Current Methods

The action tags predicted by the proposed action detection
model is used for training the image-captioning model. We
first train the model for 40 epochs with the cross-entropy
loss with a batch size of 256 and learning rate of 1 x 107>,
then fine-tune the model for 25 epochs by reinforcement
learning [25] with the CIDEr [26] optimization, with a batch
size of 16 and learning rate of 5 x 1076,

Tables 1 and 2 show the experimental results on two op-
timization strategies, namely the cross-entropy optimization
and the CIDEr optimization, respectively.

For the cross-entropy optimization strategy, the proposed
method which incorporates predicted action tags outper-
formed other captioning methods. For example, the pro-
posed method improved 1.3, 1.7, 9.8, and 1.6 points over
the Transformer-based model, X-Transformer [13] on each
metric, respectively. This demonstrates the effectiveness of
the semantic alignment for learning semantics using tags.
Moreover, to explore the performance with semantic align-
ment by Oscar [7] and VinVL [8], we choose the models
trained with object tags for comparison. We can see that
the proposed method using action tags instead of object tags
surpassed in all metrics than Oscar. The proposed method
also outperformed VinVL [8], the state-of-the-art semantic
alignment-based method with the BLEU-4, METEOR, and
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CIDEr metrics by 0.1, 0.1, and 0.5 points, respectively.

On the other hand, for the CIDEr optimization strategy, the
proposed method improved by 0.5, 1.1, 3.2, and 2.2 points
compared to the object-tag-based Oscar [7] on each metric,
respectively. Especially, we also obtained good results and
surpassed VinVL [8] with BLEU-4 and CIDEr, respectively.
The proposed method also showed good performance with
this optimization, as shown in Table 2.

The proposed method using action tags can provide ac-
tion information while learning the semantics and the results
showed good performance with such tags. This shows that
the proposed method using semantic alignment with action
tags can be used to learn better semantic level representation
and is capable of catching the action information which other
methods ignores, resulting in captioning with higher quality.

2) Performance on Public Leaderboard
The MS-COCO dataset [21] has also an official test set
composed of 40,775 images with either 5 captions (c5) or 40
captions (c40) per image. An online testing environment on a
public server shows a leaderboard of the submitted results.
Table 3 shows a concise version of the leaderboard®. The
proposed method showed good performance on the entire
leaderboard. Compared to the Transformer-based models, the
proposed method outperformed X-Transformer [13] and M2-
T [37] models, including all caption metrics. For the latest
Reformer model [39], the proposed method also surpassed it
in most of the metrics. Especially in the circumstance of c40,
the performance increased much more than that of c5. Spe-
cially, Reformer [39] also considers the relationships between
objects in the image, but the proposed method introducing
action tags showed remarkable improvements across almost
all metrics.

3) Results on the Flickr30k Dataset

As mentioned earlier, in the early years, image-captioning
methods were evaluated on the Flickr30k dataset [29]. For
comparison with these methods, we also compare the pro-
posed method using this dataset by cross-entropy optimiza-
tion. As shown in Table 4, the proposed method with ac-
tion tags showed good performance compared with the other
methods in all metrics. Especially for the SPICE [36] metric,
the proposed method vastly outperformed the other methods,

3Results in the table obtained on J uly 1, 2023.
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TABLE 3. Leaderboard of various methods on the online MS-COCO [21] test server, with metrics BLEU-1 [33], BLEU-4 [33], METEOR [34], ROUGE [35], and

CIDEr [26] scores.

BLEU-1 BLEU-4 METEOR ROUGE CIDEr
Methods
c5 c40 c5 c40 c5 c40 cS c40 c5 c40

Up-Down [18] 80.2 95.2 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
AoANet [12] 81.0 95.0 394 71.2 29.1 38.5 58.9 74.5 126.9 129.6
ETA [10] 81.2 95.0 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4
X-Transformer [13] 81.9 95.7 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
M2-T [37] 81.6 96.0 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
GCN+H [38] 81.6 95.9 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2
ReFormer [39] 82.0 96.7 40.1 73.2 29.8 39.5 59.9 75.2 129.9 132.8
Proposed 81.9 96.6 40.4 74.0 30.4 40.5 60.2 76.5 133.6 136.5

TABLE 4. Performance on the Flickr30k dataset [29] trained with the
proposed action tags compared with other methods with cross-entropy
optimization with metrics BLEU-4 [33], METEOR [34], CIDEr [26], and
SPICE [36] scores.

Methods BLEU-4 METEOR CIDEr SPICE
BRNN [30] 15.7 15.3 24.7 —
PMAS [40] 21.3 20.0 46.4 —
GVD [41] 27.3 225 62.3 16.5
Unified VLP [6] 30.1 23.0 674 17.0
Proposed 27.4 23.0 63.5 17.5

0.5 point higher than Unified VLP [6] which was the state-
of-the-art in those days.

C. ABLATION STUDY COMPARING OBJECT AND ACTION
TAGS

We explore the impact of the two types of tags as an ablation
study. First, we perform experiments with different types
of tags to explore how the proposed action tags perform
compared to the object tags. The ablation setting is as the
following: object tags only, action tags only, and both the
object and action tags.

As shown in Table 5, the action tags only setting outper-
formed the other settings in most metrics. Improvements were
seen in the BLEU-4 [33], METEOR [34], and CIDEr [26]
metrics. Meanwhile, the object tags only setting showed
slightly better performance in the SPICE [36] metric. Since
object tags represent more detailed information about objects,
SPICE using the elements of the scene graph consisting of a
large amount of objects performed well. When using the two
types of tags together, due to difference in semantics, the re-
sults dropped a little compared to the other settings with either
object or action tags only. Simultaneously introducing two
types of tags seemed to have conflict in learning the semantics
and the model could not learn good representation for both of
them. In the following sections, we show more clearly that the
objects and actions are separated in the semantic space.

In addition, we also analyze the numbers of the object
and action tags. As shown in Table 6, the action tags are
fewer in numbers, usually less than 5 tags (average 3.6),
compared to object tags (average 20.9). This makes it possible
to reduce the maximum length of sequence that is fed into the

VOLUME 11, 2023

Transformer model. Due to the computational complexity of
the Transformer model being highly related to the sequence
length, it shows the potential to reduce the computation
around 15% and making the model more efficient. Here,
we analyze the computational complexity when generating a
caption for an image. The results show that FLOPs drop from
10.3G to 8.6G if we reduced the length of the input.

D. ANALYSIS ON THE NUMBER OF ACTION TAGS

In this section, we analyze the impact of changing the number
of action tags added to the model. Here, we define the level
of action by the maximum number of action tags N as: None
(N = 0), Low (N = 1), Mid (N = 2), and High (N = 3).
We use this setting for comparison in Table 7 and Figure 5.
In Table 7, we can see that with the increase of action tag
numbers, most metrics rose gradually. Especially, the top
scores were obtained when two or three action tags were input
to the model (Mid and High). This may be attributed to the
fact that more action tags provide more action information to
help learning better representations. In the case no action tag
was input to the model, an information gap existed between
text and image representations making it hard to obtain good
representation in learning semantics, and led to weak perfor-
mance. It shows clearly that all the metrics without an action
tag were worse than the others with action tags.

On the other hand, we also analyze how the performance
changes as the training proceeds. Here, we focus on the
CIDEr [26] and SPICE [36] metrics. In Fig. 5, we can see
that in general, when the action tags were input to the model,
it performed much better than the counterpart without any
action tag input. Especially for SPICE shown in Fig. 5 (b),
even if only one action tag was fed into the model, the per-
formance increase shows that it learned significant semantic
information.

E. VISUALIZATION

We visualize the learned semantic feature space of text with
objects and actions on a 2D map using t-distributed Stochastic
Neighbor Embedding (t-SNE) [42]. For each word token, we
pass it through the model, and use the last-four layers in the
model as features for visualization. The captioning model
trained with object tags (Fig. 6(a)) and that trained with action

9
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FIGURE 5. Performance of CIDEr (1) [26] and SPICE (1) [36] metrics with settings: Without action tags (without color), numbers of action tags from one to

three (pink, yellow, and blue).

TABLE 5. Performance on MS-COCO [30] Karpathy test split with settings: Object tags only, action tags only, and both tags, with metrics BLEU-4 [33],

METEOR [34], CIDEr [26], and SPICE [36] scores.

Tags Cross-entropy optimization CIDEr optimization
BLEU-4 METEOR CIDEr SPICE BLEU-4 METEOR CIDEr SPICE

Object 38.2 30.3 129.3 23.6 40.9 30.9 140.6 25.1
Action 38.3 30.4 129.8 23.4 41.0 30.8 140.8 25.0
Object and Action 37.6 30.3 128.9 23.4 41.0 30.9 139.2 25.0
TABLE 6. Comparison of object tags and action tags. ObjCCt tags Contributing to more efficienCY.

« Object classes of related semantics such as objects oven,
Tags Average numbers Total input length FLOPs table, and chair are shown in the right part, while the
Object 209 120 10.3G action classes such as wearing, eating, and sitting are
Action 3.6 100 8.6G

TABLE 7. Performance on MS-COCO [30] dataset trained with different
action levels, with metrics BLEU-4 [33], METEOR [34], CIDEr [26], and
SPICE [36] scores.

Action level BLEU-4 METEOR CIDEr SPICE
None 37.97 30.00 127.60 22.92
Low 37.84 30.35 128.64 23.41
Mid 38.14 30.41 129.45 23.44
High 38.09 30.37 129.10 23.45

tags (Fig. 6(b)) are compared. The visualization reveals some
interesting findings as:

o Comparing Figs. 6(a) and 6(b), with the introduction
of action tags for training the model, the distance of the
group of actions (left part) to the group of objects (right
part) became similar. This indicates that introducing ac-
tion tags performed a similar result when distinguishing
the difference between actions and objects in semantics,
while the action tags reduced the total token length than

shown in the left part of the semantic space. The ex-
amples show that in the semantic space, different types
of classes provide different information. The previous
experiments in Sec. IV-C trained with each of the two
types of tags alone, led to good performance in learning
the semantics for captioning. However, when using them
together, the performance dropped. It indicates that the
two types of tags are used for providing different seman-
tic information. Since the different types of tags belong
to quite different semantic spaces, using both of them
together seems difficult for learning the semantics.

F. CAPTIONING EXAMPLES

In this section, we further compare the generated captions of
the models trained with object tags and action tags, as shown
in Fig. 7. They also show the difference when describing
the image contents. Examples of image captioning results
are shown in the following figures. We first compare using
the proposed method with action tags to the counterpart with
object tags in Fig. 7. These results were obtained by the cross-
entropy optimization. We can see that with the use of different
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(a) Model trained with object tags

(b) Model trained with action tags

FIGURE 6. T-SNE [42] visualization of object and action tags shown in the same scale by normalization.

VinVL: a large jetliner flying
over a large body of water.

Proposed: a plane flying
over the ocean with a person

standing in the water. in the woods.

VinVL: a man wearing a
green hat and a green tie.

Proposed: a man wearing a
hat and sunglasses standing

VinVL: a piece of chocolate
cake on a plate with a knife.
Proposed: a piece of choco-
late cake sitting on top of a
white plate.

VinVL: a woman in a black

VinVL: a little girl sitting in

a chair at a table.
phone.

Proposed: a little girl sitting
at a table with a little girl

eating food. cellphone.

and white dress and a cell-

Proposed: a woman in a
black dress is looking at her

VinVL: a person jumping a
pair of skis in the air.
Proposed: a man flying

through the air while riding
skis.

FIGURE 7. Examples of captions generated by the proposed method with action tags and the recent method using object tags. The caption in the first
line is the one trained with object tags (VinVL [8] was chosen for easy comparison), while that in the second line is the one from the proposed

method trained with action tags with the cross-entropy optimization.

types of tags, the captions focused on different information.
When only the object tags were used, the action information
of images were ignored, which was the significant part of the
semantics.

For example, in the first image, the object tags concentrated
on a large jetliner, but ignored the person standing in the
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water. Meanwhile, the proposed method using action tags
caught the action information more precisely by not only
focusing on the information around the jetliner but also caught
the action that the person was standing in the water. Further,
we found that the method using object tags can catch details
of the objects, such as the color of the tie shown in the second
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TABLE 8. Accuracy of common actions.

Actions hit look sit wear

perch

run eat fly stand hold

Accuracy 0.49 0.25 0.43 0.61

0.33

0.20 0.48 0.56 0.48 0.37

Ground-Truth Tags:
holding, covered, looking,
standing, takes

Predicted Tags:
looking, taking, using

Predicted Tags:

Caption: a man is taking a Caption: a young boy hitting
picture of the mountains.

Ground-Truth Tags:
laying, thought, likes

Predicted Tags: Predicted Tags:

Ground-Truth Tags:
playing, poised, smash,
getting, forehand, hit, gets,
swing

hit, wearing, playing

a tennis ball with a racquet.

Ground-Truth Tags:
perched, standing, sitting

Ground-Truth Tags:
making, learning, sitting

Predicted Tags:

doing, wearing, sitting,
working

Caption: a group of children
sitting at a table cutting

Ground-Truth Tags:
playing, runs, running

Predicted Tags: playing,

sleeping, wearing sitting, sits, perched, sitting

Caption: a small bird

trying, running, catch
Caption: a baseball player

Caption: a dog is wearing a

hat and laying on the floor. ' ©

perched on top of a wooden

running to first base during
a game.

FIGURE 8. Examples of captions generated by the proposed method and the coverage of action tags.

image, while ignoring the key important action information
standing in the woods.

Next, in the images with multiple actions, e.g., child eating
something or a woman watching phone, we found that in
such circumstances, the model only using object tags showed
limitation in captioning the image contents. It can only catch
the details of the objects, such as chair, table, woman, dress,
and cellphone, but the action information between them could
not be captured correctly. It ignored the information of eating
food and looking at cellphone. Thus only using object infor-
mation made the caption low in quality.

We also show if the predicted action tags used to analyze
have the same actions with the ground truth. Here, we trans-
form the action tags to the original format using NLTK [31]
stemming, e.g. the tag “sitting” is transformed to “sit”,
“wearing” is to “‘wear”, etc. We analyze the common actions
from the top 20 actions and find if it predicts successfully.
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For example, when the action “hit” exists in both ground-
truth and prediction tags, the prediction is considered correct.
Here the accuracy is calculated as the percentage of correctly
predicted samples to all samples. We analyze some of the
common actions in all 5,000 testing images, as shown in
Table 8. From this result, we can see that the action tags with
common actions could be predicted correctly.

We also show images with the caption results, as well as
their corresponding ground-truth tags and the prediction tags
were in Fig. 8. We can also see that the predicted action
tags were consistent with the ground truth and showed more
clearly and briefly, the actions in each image. For example
in the fourth image, although the prediction was not consis-
tent with the ground truth, the proposed method produced
a reasonable prediction for providing the action information
of that image. Since the predicted action tags are used as
the anchor points in the training process, guiding the text
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generated for that image with proper action information leads
to improvement in the caption quality.

V. CONCLUSIONS
In this paper, we proposed a new image-captioning model
which introduced action tags for semantic alignment. Com-
pared with the current model VinVL [8] that only uses object
tags, the proposed method obtained similar or better perfor-
mance in most of the common metrics with two kinds of opti-
mizations. Moreover, the proposed action tags were shown to
provide action information that object tags do not represent.
Using action tags, we can obtain a caption describing image
contents with more actions, and it contributes to be applied
in the scenes of human activities in our daily life. We also
found that action tags are in general, less than five, but still
obtained similar or better performance than when using many
more object tags, which shows the potential for improving the
efficiency within the Transformer-based captioning model.
In future work, we will also consider the combination of
the information of objects to expand the scenes, and make
improvement in such images focusing on proper contents for
both objects and actions, which is also a challenging situation
in our daily life.
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