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Background
lExisting image captioning approaches aim for an 

accurate image content description

lHowever, captions are used in varying 

applications with different needs and styles
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A stop sign is on a road 

with a mountain 

in the background

A giraffe standing in a forest 

with trees in the background

For accessibility

• The advertisement billboard for the movie on 

the movie theater’s building and two walking men.

For news paper article

• A sign for the popular Japanese manga 

“Demon Slayer” at a Tokyo theater last week.*

*https://www.nytimes.com/2020/10/20/business/demon-slayer-japan-movie.html



Research goal
lWe aim for diverse captioning with customizable 

descriptiveness of generated captions

lBy changing descriptiveness, the output can be 
adjusted to different applications
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A boy is riding a snowboard.

A person is standing on the ground.

High

Low

Visual

Descriptiveness
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Using Imageability
l Imageability is “the ease with which a word gives 

rise to a sensory mental image”[1]

n Psycholinguistic measure

n Available as dictionaries[2] or estimation[3]

→ Use imageability as an approximation 

for a captions’ descriptiveness
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Imageability
“sports car” “vehicle”

0.6 0.3>



Proposed framework
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1. Data augmentation
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[4] Lin et al., “Microsoft COCO Common Objects in Context.”, ECCV, 2014.

[5] Miller., “WordNet: A lexical database for English.”, Commun. ACM, 1995.

l Increase caption variety on an existing dataset[4]

n For each noun, we add extra captions by replacing it 

with more abstract words

ØUsing WordNet[5] for replacement



2. Caption imageability calculation
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Calculate 

sentence imageability

Caption 

imageability

Word 

imageability 

dictionary

[6] Manning et al. , “The Stanford CoreNLP natural language processing toolkit”, ACL, 2014.

[7] Ljubešić et al., “Predicting concreteness and imageability of words within and across  languages 

via word embeddings.”, Workshop on RL for NLP, 2018.

My brother is a 
college student. 0.68

l Calculate a “caption- imageability” 
score for each caption

n Using word imageability 
in existing dictionaries[2,7]

n In a bottom-up way using
parsing tree

Ø Rule-based approach to decide 

imageability for upper nodes

(Details in paper)

l Resulting in imageability-annotated 
captions

Bottom-up



l Extending LSTM-based architecture by Xu et al.[8]

l For a caption 𝑐 = 𝒘!, 𝒘", … ,𝒘#

n 𝑤!: 𝑖-th word vector

l Training 512-dim. vectors

n 𝒙": Language features

Ø 𝒙! = 𝑊"𝒘!#$, where 𝑡 ∈ 1,… , 𝑁

n 𝑰": Attention-based visual features

Ø 𝑰! = Att(𝒉!#$, 𝑰%)

n 𝐈𝐦𝐚𝐠: Imageability vector

Ø 𝐈𝐦𝐚𝐠 = [𝐶𝑎𝑝𝑡𝑖𝑜𝑛 𝑖𝑚𝑎𝑔𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦, … , 𝐶𝑎𝑝𝑡𝑖𝑜𝑛 𝑖𝑚𝑎𝑔𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦]

3. Training the captioning model 
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𝑰!: Visual features from the

attention network

𝒉"#$: Hidden features from 

the previous step

) 𝒉" = LSTM concat 𝒙", 𝑰", 𝐈𝐦𝐚𝐠𝒘" = softmax 𝑊%𝒉" 𝑊% ,𝑊&: Training parameters

[8] Xu et al., “Show, attend and tell: neural image caption generation with visual attention”, ICML, 2015



Captioning model (extended from [8])
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(2048, 14, 14)

(2048, 14, 14)

(3, 𝐻, 𝑊)

⁝

Encoder

ℎ$ℎ' ℎ(ℎ)

𝑐$ 𝑐) 𝑐( 𝑐*

Decoder DecoderDecoder Decoder

a<start> man holds

a man holds a

⁝

＋ ＋ ＋＋

＋ ＋ ＋＋

[0.62,…,0.62] [0.62,…,0.62][0.62,…,0.62][0.62,…,0.62]

⁝

Language features

Imageability vector

Attention-based

visual features



Proposed framework
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Caption generation
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l Input: Image＋Target imageability in [0,1]

lOutput: Caption with customized visual
descriptiveness

1. Generating output candidates
based on beam-size

2. Calculating caption imageability for each output

3. Select the best candidate

0.8

+
0.81



lTraining setting for the proposed method

n Parameters

Ø9 levels of target imageability: 0.1, 0.2, …, 0.9

ØBeam Size: 5

n Sampling for training

Øw/o sorting: Order of augmentation

Øw/ sorting: Alternate between lowest/highest imageability

lComparison method

n Train with imageability-annotated dataset

n Select the first generated caption without selecting the 
best candidate

Environment (1/2)
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④

③

②

① 0.45 : An organism laying on…

0.46 : An animal sitting on ...

：

0.82 : A dog sitting in ...

0.89 : A brown and white dog standing ...



Environment (2/2)
l Baseline dataset: MS COCO[4]

l Ground-truth for word imageability
n Combining Scott et al.[2]＋ Ljubešić et al.[7]

l Extending dataset as discussed before
n Removing images which cannot be diversified

n Ending up with (#imageability-annotated images):
Ø Training: 109,114

Ø Validation: 4,819

Ø Test: 4,795

l Experiments
1. Target Imageability

2. Image captioning

3. Crowd-sourced user study
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Experiment 1: Imageability
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lMetrics
n Diversity of generated captions (avg. # generable captions)

n Span of generated imageability (for targets between [0,1])

n MSE between GT imageability and generated imageability

n RMSE between GT imageability and generated imageability

lResults

Method Sampling Diversity

Imag. 

range

MSE RMSE

Low
[0.1, 0.3]

Mid
[0.4, 0.6]

High
[0.7, 0.9]

Low
[0.1, 0.3]

Mid
[0.4, 0.6]

High
[0.7, 0.9]

Prop.
w/ sorting 4.68 0.083 0.405 0.118 0.011 0.632 0.334 0.098

w/o sorting 4.63 0.182 0.338 0.089 0.014 0.573 0.276 0.107

Comp.
w/ sorting 3.50 0.070 0.434 0.131 0.015 0.655 0.354 0.117

w/o sorting 3.26 0.164 0.378 0.103 0.022 0.607 0.300 0.142



Experiment 2: Image captioning
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l Metrics
n BLEU-4, CIDEr, ROUGE, METEOR, SPICE

n Average across all imageability ranges

l Results

n Comparison method slightly better, 
but does not consider imageability
Ø To be expected: BLEU-4 etc. intrinsically disadvantageous for style-

changes as targeted in research goal.

Method

Sampling 

method BLEU-4 CIDEr ROUGE METEOR SPICE

Proposed
w/ sorting 0.258 0.620 0.497 0.231 0.089

w/o sorting 0.267 0.676 0.501 0.236 0.090

Comparison
w/ sorting 0.267 0.636 0.501 0.233 0.090

w/o sorting 0.277 0.706 0.506 0.240 0.091



Experiment 3: User study
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l Using Amazon Mechanical Turk (AMT)
n Evaluating 200 images with 278 English-speaking 

participants

l Experiment
n Paired comparisons to decide descriptiveness of captions

ØDo they match the intended order (= low/mid/high descriptiveness)?

l Tested method
n Proposed method w/ sorting

Generating three captions per image: {0.5, 0.7,0.9}

l Results
n “Correct” answers for pair-comparisons: 65.8%
n Spearman correlation between 

AMT order and intended order: 0.37



Generated captions examples
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Target score Generated caption

0.6 A placental is laying on a keyboard on a desk.

0.7 A vertebrate is laying on a keyboard on a desk.

0.8 A feline is laying on a keyboard on a desk.

0.9 A cat is laying on a computer keyboard.

P
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p
. M

e
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o
d

0.6∼0.9 A placental is laying on a keyboard on a desk.

C
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m
p
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e
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o

d

Target score Generated caption

0.6 A white and blue medium sitting on a runway.

0.7 A white and blue medium on a runway.

0.8 A small white and blue craft on a runway.

0.9 A small craft sitting on top of an airport tarmac.

0.6∼0.8 A white and blue craft sitting on a runway.

0.9 A small craft sitting on top of a runway.

P
ro

p
. M

e
th

o
d

C
o

m
p

. M
e
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lNovel diverse image captioning framework 
n Allow for customizing visual descriptiveness to create 

captions for different purposes

n Use word imageability to express and train 
descriptiveness

lProposed framework
n Augmenting existing dataset for diversity

n Calculate caption imageability score for each caption

n Train on {image, caption, imageability}

lResults promising, validated by crowd-sourced 
user study

Conclusion

18


