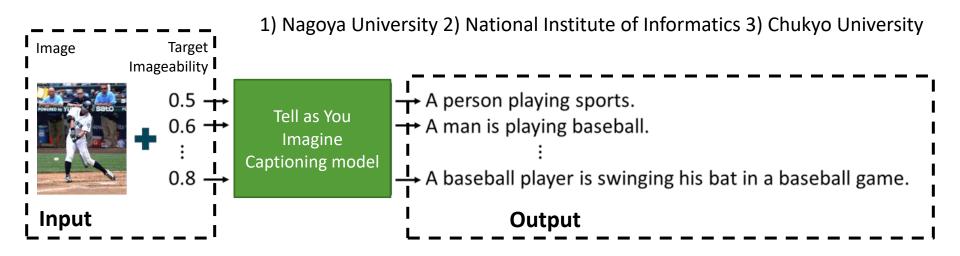


Tell as You Imagine: Sentence Imageability-Aware Image Captioning

Kazuki Umemura¹, **Marc A. Kastner**^{2,1}, Ichiro Ide¹, Yasutomo Kawanishi¹, Takatsugu Hirayama¹, Keisuke Doman^{3,1}, Daisuke Deguchi¹, Hiroshi Murase¹



Background

Existing image captioning approaches aim for an accurate image content description

A stop sign is on a road with a mountain in the background

A giraffe standing in a forest with trees in the background

However, captions are used in varying applications with different needs and styles

For accessibility

• The advertisement billboard for the movie on the movie theater's building and two walking men.

For news paper article

A sign for the popular Japanese manga
 "Demon Slayer" at a Tokyo theater last week.*

*https://www.nytimes.com/2020/10/20/business/demon-slayer-japan-movie.html 2

Research goal

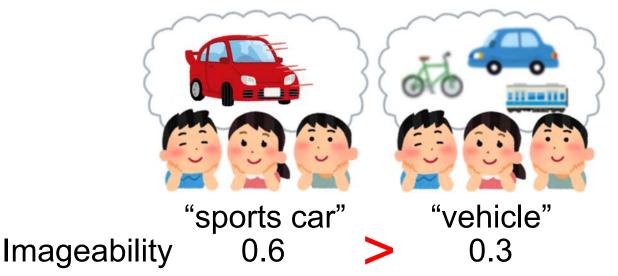
We aim for diverse captioning with customizable descriptiveness of generated captions

Visual High → A boy is riding a snowboard. Descriptiveness Low → A person is standing on the ground.

 By changing descriptiveness, the output can be adjusted to different applications

Using Imageability

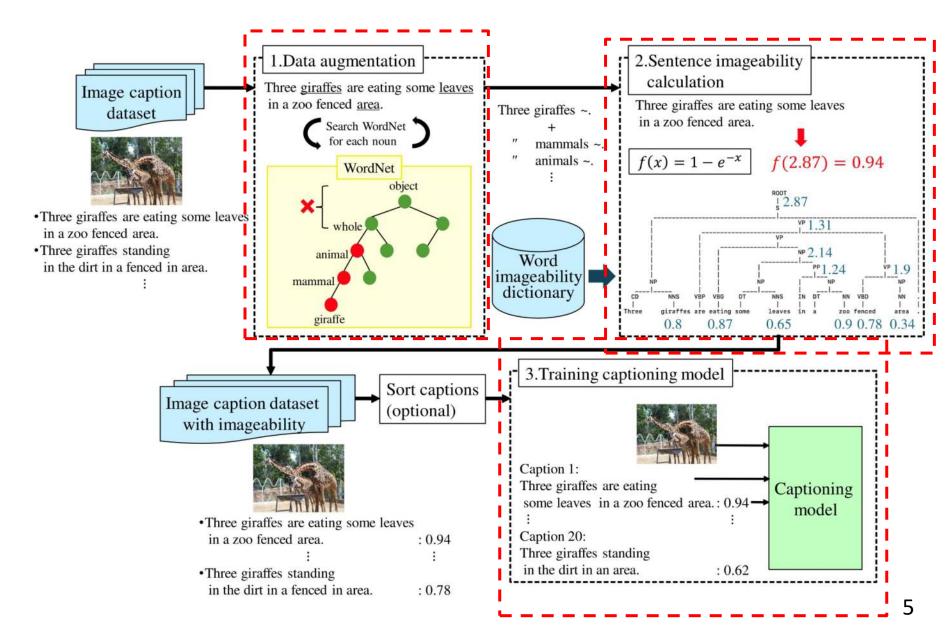
- Imageability is "the ease with which a word gives rise to a sensory mental image"^[1]
 - Psycholinguistic measure
 - Available as dictionaries^[2] or estimation^[3]



→ Use imageability as an approximation for a captions' descriptiveness

Paivio et al., "Concreteness, imagery, and meaningfulness values for 925 nouns.," J. Exp. Psychol, 1968.
 Scott et al., "The Glasgow Norms: Ratings of 5,500 Words on Nine Scales.", Behav. Res. Meth, 2018.

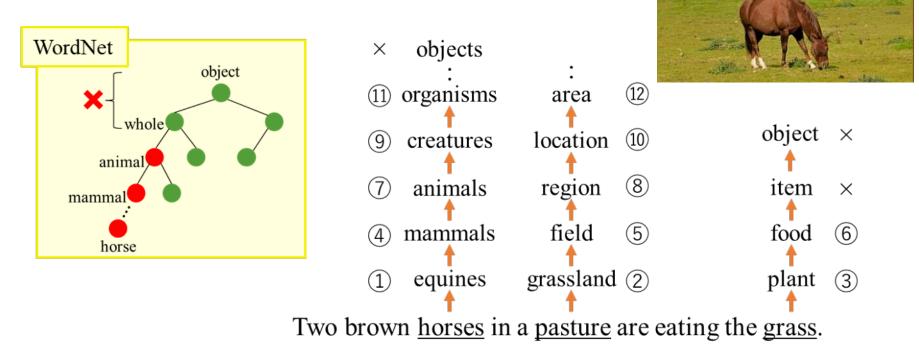
Proposed framework



1. Data augmentation

Increase caption variety on an existing dataset^[4]
 For each noun, we add extra captions by replacing it with more abstract words

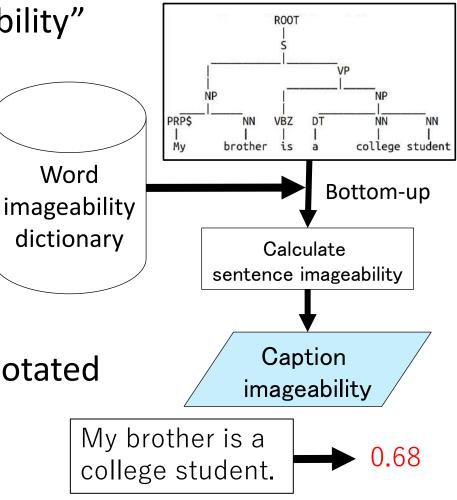
Using WordNet^[5] for replacement



[4] Lin et al., "Microsoft COCO Common Objects in Context.", ECCV, 2014.[5] Miller., "WordNet: A lexical database for English.", Commun. ACM, 1995.

2. Caption imageability calculation

- Calculate a "caption- imageability" score for each caption
 - Using word imageability in existing dictionaries^[2,7]
 - In a bottom-up way using parsing tree
 - Rule-based approach to decide imageability for upper nodes (Details in paper)
- Resulting in imageability-annotated captions



[6] Manning et al., "The Stanford CoreNLP natural language processing toolkit", ACL, 2014.

[7] Ljubešić et al., "Predicting concreteness and imageability of words within and across languages via word embeddings.", Workshop on RL for NLP, 2018.

3. Training the captioning model

• Extending LSTM-based architecture by Xu et al.^[8]

• For a caption
$$c = \{w_0, w_1, ..., w_N\}$$

• $w_i: i$ -th word vector

- Training 512-dim. vectors
 - **x_t:** Language features

►
$$x_t = W_e w_{t-1}$$
, where $t \in \{1, ..., N\}$

I_t: Attention-based visual features

$$\succ I_t = \operatorname{Att}(h_{t-1}, I_f)$$

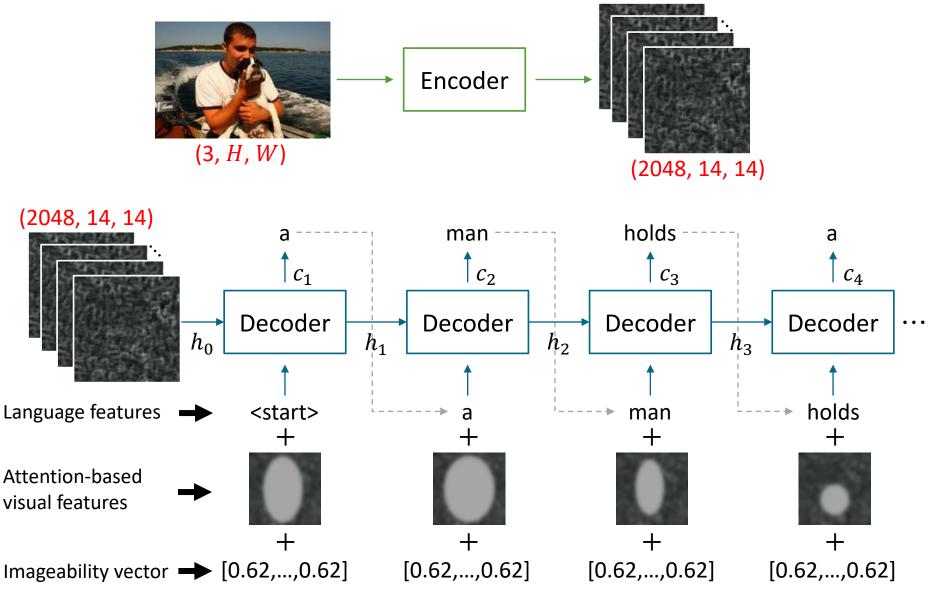
 I_f : Visual features from the attention network h_{t-1} : Hidden features from the previous step

- Imag: Imageability vector
 - > Imag = [Caption imageability, ..., Caption imageability]

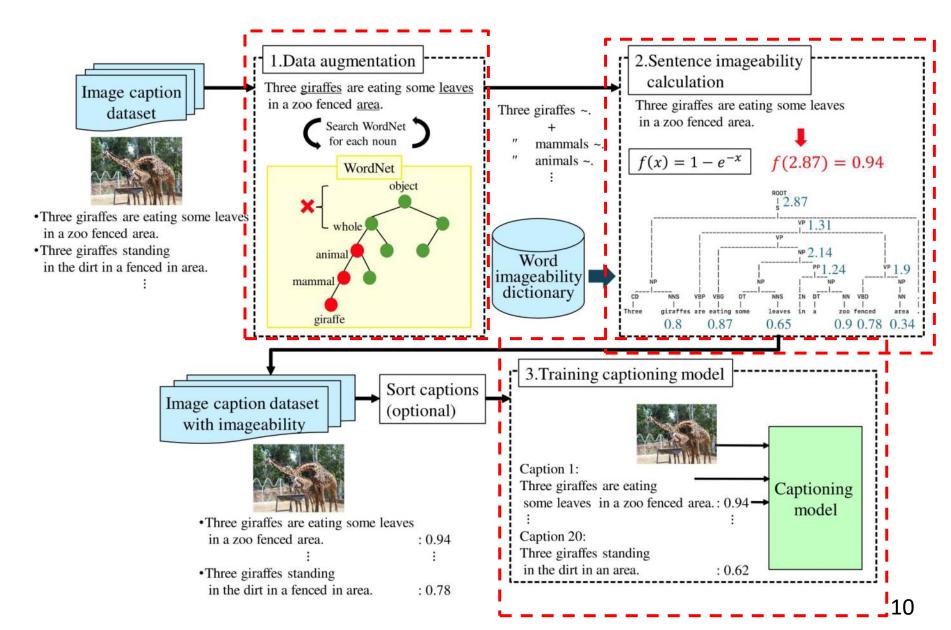
$$\begin{cases} \boldsymbol{h}_t = \text{LSTM}(\text{concat}(\boldsymbol{x}_t, \boldsymbol{I}_t, \text{Imag})) \\ \boldsymbol{w}_t = \text{softmax}(W_l \boldsymbol{h}_t) \end{cases}$$

 W_e , W_l : Training parameters

Captioning model (extended from [8])



Proposed framework



Caption generation

- Input: Image + Target imageability in [0,1]
- Output: Caption with customized visual descriptiveness
- 1. Generating output candidates based on beam-size
- 2. Calculating caption imageability for each output
- 3. Select the best candidate

CapA. A dog sitting in front of a red door.
CapB. A brown and white dog sitting on a leash.
CapC. A brown and white dog laying next to a bike.
CapD A brown and white dog standing next to a red container.
CapE. A white dog standing on the ground.
→ 0.59
→ 0.72
→ 0.72
→ 0.73
→ 0.63

Environment (1/2)

Training setting for the proposed method

Parameters

- > 9 levels of target imageability: 0.1, 0.2, ..., 0.9
- Beam Size: 5
- Sampling for training
 - > w/o sorting: Order of augmentation
 - > w/ sorting: Alternate between lowest/highest imageability

0.45 : An organism laying on...

- 0.46 : An animal sitting on ...
- (4) 0.82 : A dog sitting in ...
- Comparison method

2 0.89 : A brown and white dog standing ...

- Train with imageability-annotated dataset
- Select the first generated caption without selecting the best candidate

Environment (2/2)

- Baseline dataset: MS COCO^[4]
- Ground-truth for word imageability
 Combining Scott et al.^[2] + Ljubešić et al.^[7]
- Extending dataset as discussed before
 - Removing images which cannot be diversified
 - Ending up with (#imageability-annotated images):

Training:	109,114
Validation:	4,819
Test:	4,795

Experiments

- 1. Target Imageability
- 2. Image captioning
- 3. Crowd-sourced user study

Experiment 1: Imageability

Metrics

- Diversity of generated captions (avg. # generable captions)
- Span of generated imageability (for targets between [0,1])
- MSE between GT imageability and generated imageability
- RMSE between GT imageability and generated imageability

Results

				MSE			RMSE		
Method	Sampling	Diversity	lmag. range	Low [0.1, 0.3]	Mid [0.4, 0.6]	High [0.7, 0.9]	Low [0.1, 0.3]	Mid [0.4, 0.6]	High [0.7, 0.9]
Drop	w/ sorting	4.68	0.083	0.405	0.118	0.011	0.632	0.334	0.098
Prop.	w/o sorting	4.63	0.182	0.338	0.089	0.014	0.573	0.276	0.107
Comp	w/ sorting	3.50	0.070	0.434	0.131	0.015	0.655	0.354	0.117
Comp.	w/o sorting	3.26	0.164	0.378	0.103	0.022	0.607	0.300	0.142

Experiment 2: Image captioning

Metrics

- BLEU-4, CIDEr, ROUGE, METEOR, SPICE
- Average across all imageability ranges

Results

Method	Sampling method	BLEU-4	CIDEr	ROUGE	METEOR	SPICE
Dranacad	w/ sorting	0.258	0.620	0.497	0.231	0.089
Proposed	w/o sorting	0.267	0.676	0.501	0.236	0.090
Comparison	w/ sorting	0.267	0.636	0.501	0.233	0.090
	w/o sorting	0.277	0.706	0.506	0.240	0.091

- Comparison method slightly better, but does not consider imageability
 - To be expected: BLEU-4 etc. intrinsically disadvantageous for stylechanges as targeted in research goal.

Experiment 3: User study

Using Amazon Mechanical Turk (AMT)

Evaluating 200 images with 278 English-speaking participants
Which sentence is easier to imagine its contents?

Caption A: A person riding a skateboard down a street.

Caption B: A man riding a skateboard down a way.

- Experiment
 - Paired comparisons to decide descriptiveness of captions
 - > Do they match the intended order (= low/mid/high descriptiveness)?

Tested method

Proposed method w/ sorting Generating three captions per image: {0.5, 0.7,0.9}

Results

- "Correct" answers for pair-comparisons: 65.8%
- Spearman correlation between AMT order and intended order: 0.37

Generated captions examples

Target score	Generated caption
0.6	A placental is laying on a keyboard on a desk.
0.7	A vertebrate is laying on a keyboard on a desk.
0.8	A feline is laying on a keyboard on a desk.
0.9	A cat is laying on a computer keyboard.
	_
0.6~0.9	A placental is laying on a keyboard on a desk.

Target score	Generated caption
0.6	A white and blue medium sitting on a runway.
0.7	A white and blue medium on a runway.
0.8	A small white and blue craft on a runway.
0.9	A small craft sitting on top of an airport tarmac.
0.6~0.8	A white and blue craft sitting on a runway.
0.9	A small craft sitting on top of a runway.

Comp. Method

Conclusion

- Novel diverse image captioning framework
 - Allow for customizing visual descriptiveness to create captions for different purposes
 - Use word imageability to express and train descriptiveness
- Proposed framework
 - Augmenting existing dataset for diversity
 - Calculate caption imageability score for each caption
 - Train on {image, caption, imageability}
- Results promising, validated by crowd-sourced user study