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Abstract. For computers to understand human perception, metrics that
can capture human perception well are important. However, there are
few metrics that characterize the visual perception of humans towards
images. Therefore, in this paper, we propose a novel concept and a met-
ric of pointedness of an image, which describes how pointy an image is
perceived. The algorithm is inspired by the Features from Accelerated
Segment Test (FAST) algorithm for corner detection which looks on the
number of continuous neighboring darker pixels surrounding each pixel.
We assume that this number would be proportional to the perceived
pointedness in the region around the pixel. We evaluated our method
towards how well it could capture the human perception of images. To
compare the method with similar metrics that describe shapes, we pre-
pared silhouette images of both artificial shapes and natural objects. The
results showed that the proposed method gave nearly equivalent percep-
tual performance to other metrics and also worked in a larger variety of
images.
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1 Introduction

Understanding human perception by computers requires appropriate metrics
that can capture human perception well. Despite this fact, there are few metrics
that characterize the visual perception of images.

A psychological study [12] has suggested that our vision system uses shape
information as one of the basic visual features. In this context, in this paper,
we introduce a novel concept and a metric of pointedness of an image, which
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we define as “How pointy an image is perceived by humans.” For example, a
photo of a pineapple would be intuitively perceived more pointy than that of an
orange because we think of a pineapple as a more pointy, or thorny object than
an orange. Thus, the pointedness of the former image should be higher than the
latter.

There are several studies that have proposed metrics to measure the concepts
of circularity [1, 4], roundness [6], or compactness [2]. Since they are designed to
describe shapes for use in applications like 3D editing, they do not necessarily
match human perception well. Thus, we aim to solve this limitation and propose
a metric designed to describe human perception foremost. Besides, these metrics
measure those concepts only from binary images that basically contain one or
several shapes.

In our proposed method to measure pointedness, we take advantage of a
classical method of Features from the Accelerated Segment Test (FAST) corner
detection algorithm [9], which first calculates a simple intensity comparison for
each pixel in an image. While a single corner in an image may be perceived pointy,
the algorithm does not calculate a pointedness score. Therefore, we extend the
intensity comparison part of the FAST algorithm to calculate a feature map,
and process it further to obtain a pointedness score for an image.

Our main contributions are:

– Introducing the concept of pointedness of an image which describes how
pointy the image is perceived by humans.

– Developing a method to calculate the pointedness of an arbitrary gray-scale
image.

– Performing a subjective analysis of visual perception of depicted shapes with
regard to the pointedness.

2 Related Work

2.1 Human Perception Towards Shapes

Psychological studies delve into how the human visual system perceives the world
around us. Prominently, Gestalt psychology [7] started research on shapes and
visual perception. Following, a study by Treisman et al. [12] proposed a theory
of visual attention suggesting that our vision focuses on several specific features
including information of colors, orientations, and shapes at the preattentive stage
of the recognition of an object. Furthermore, a recent study by Huang et al. [5]
also proved that preattentive shape features can be explained by three basic
dimensions of segmentability, compactness, and spikiness.

These studies suggest that how pointy or round a shape is plays an important
role in our visual perception.

2.2 Metrics Describing Shapes

There are metrics related to our study, such as circularity [1, 4], roundness [6],
or compactness [2]. Strictly speaking, these three terms are defined as different
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Fig. 1: Process flow of the proposed method. From an input image, we first
calculate a feature map, where each pixel represents the number of continuous
surrounding darker pixels. Next, we determine a histogram for the high intensity
values. After standardizing the resulting histogram, we obtain the pointedness
of an input image by calculating the weighted sum of the histogram.

concepts. However, they are often considered to represent the same concept in
a 2D Euclidean space: “How close the shape is to a circle” [10]. Although those
definitions are not unique and vary from paper to paper [10], the most common
definition is

Circularity =
4πArea

Perimeter2
, (1)

where Area is the area and Perimeter is the perimeter of a target shape. This
measurement ranges from 0 to 1, and equals 1 if and only if the shape is a circle.

Because of this definition, circularity is mostly designed to work on contours
or silhouettes. Our proposed metric of pointedness, in contrast, is designed to
work on gray-scale images in order to tackle this limitation.

2.3 FAST Algorithm

Features from Accelerated Segment Test (FAST) [9] is an algorithm used for
corner detection. The core idea is a circle-wise intensity comparison. First, in-
tensities of 16 circle-wise pixels around a target pixel p are compared with an
intensity of p, and then each of the surrounding 16 pixels are classified by a
threshold into three categories: darker, brighter, and similar. Next, the numbers
of continuous darker/brighter pixels are counted respectively and the decision
whether p is a corner or not is made according to those numbers.

3 Pointedness Calculation

In this paper, we propose a novel method that measures the introduced concept
of pointedness from an input gray-scale image. We expect that foreground objects
have high intensity and the background has low intensity. The process flow of
the method is illustrated in Fig. 1.

First, we obtain a feature map from an input image, which describes the
degree of pointedness for each pixel in an image. Here, we utilize the idea of
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Fig. 2: Examples of regions with a large number of continuous darker pixels. This
approximates the pointedness at the pixel.

a circle-wise intensity comparison in the FAST algorithm. In detail, for each
neighboring pixel ps surrounding a target pixel p, if the intensity of ps is less
than the intensity of p minus a threshold t, ps is classified as a darker pixel.
Then, we assume that the number of continuous darker pixels surrounding each
pixel can be used for the calculation of a pointedness score for the region. For
example, if the number of darker pixels is high, the shape around the point would
be perceived pointy, while if it is low, it would be perceived less pointy. Examples
of this idea are shown in Fig. 2. We obtain a feature map of which each pixel
denotes the number of surrounding darker pixels at the point. A region around
the pixel where the number of darker pixels is eight, has a flat contour, while
one where the number of darker pixels is less than eight, has a dented contour.
According to findings in psychological research [5], something is perceived pointy
by humans if we expect a potential danger of grasping it. Therefore, in this study,
we do not treat a dented contour as pointy, and we assume that only a value
between nine and fifteen has influence on the pointedness of an image.

Next, by counting the values between nine and fifteen in the feature map, we
obtain a histogram with 7 bins. If xn is defined as the occurrence of pixels with
a value of n, the value of the n-th bin, yn, is described as

yn =
xn∑

n∈{9,...,15} xn
. (2)

Let Yn be a random variable that represents the probability of yn. We here
assume Yn to have a normal distribution denoted as Yn ∼ N (µn, σ

2
n).

Then, in order to obtain a standardized normal distribution, we standardize
Yn for every n, obtaining a standardized histogram. Each bin of the histogram
is described as a variable Yn−µ̂n

σ̂n
, where µ̂n and σ̂n are estimated values of µn

and σn calculated as,

µ̂n =
1

n

m∑
i=1

yni, σ̂n =
Γ(n−12 )

Γ(n2 )

√√√√1

2

m∑
i=1

(yni − µ̂n)2, (3)

where yni is an observed value taken from Yn of the i-th image and Γ(x) is the
gamma function.
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(a) Experiment 1: Artificial shapes (b) Experiment 2: Natural shapes

Fig. 3: Datasets used in each of the experiments.

Lastly, because the relationship between the number of darker pixels and the
pointedness is not necessarily linear, we calculate a weighted sum to obtain the
pointedness score P for an image, formulated as

P =
∑

n∈{9,...,15}

hist(n)w(n) =
∑

n∈{9,...,15}

(
yn − µ̂n
σ̂n

)
w(n), (4)

where hist(n) represents the frequency of the n-th bin of the standardized his-
togram, and w represents a manually designed weight function for each bin. The
weight function should be a monotonically increasing function that maps an in-
terval of [9, 15] to [0, 1]. In this way, it can give a corresponding weight for each
number of darker pixels.

The obtained score P is in the range of (−∞,+∞), and this value is expected
to be proportional to human perception towards pointedness. For the case where
P should be finite, we can obtain the score in the range of (0, 1) by applying a
sigmoid function to P obtained by Eq. 4 that is defined as

sigmoid(x) =
1

1 + e−x
. (5)

4 Evaluations on Binary Images of Shapes

We conducted two subjective experiments to evaluate how well the proposed
method can capture the human perception towards the proposed concept of
pointedness. Although our method can be applied to arbitrary gray-scale im-
ages, we chose binary images in these experiments for the comparison with the
related metric of circularity [10]. Each experiment used 12 images of 128× 128
pixels which are shown in Fig. 3. In the first experiment, we prepared binary
images each of which contains an artificial shape. These shapes were created by
distorting radial frequency patterns [13], which are defined by deformations of
circles through sinusoidal modulation of the radius in polar coordinates. In the
second experiment, we selected silhouette images of more natural objects from
the MPEG-7 Core Experiment CE Shape 1 Dataset [8]. We separated the ex-
periments in this way because we assumed that the human responses to those
images might differ depending on whether the images were familiar or unfamiliar
to them.
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Table 1: Subjective evaluation of two experiments. Each entry shows the Pear-
son’s correlation between the scores determined by the metric and the scale
obtained in a user study.

Type Method Weighting
Experiment 1 Experiment 2

(full dataset) (full dataset) (w/o Lizard)

Comparative
−Circularity — 0.859 0.632 0.514

Circularity−1 — 0.919 0.772 0.494

Proposed

Pointedness
w/o Sigmoid

a = 0.5 0.844 0.627 0.611

a = 1.0 0.830 0.651 0.586

a = 2.0 0.782 0.683 0.542

Pointedness
w/ Sigmoid

a = 0.5 0.919 0.673 0.639

a = 1.0 0.904 0.664 0.596

a = 2.0 0.853 0.664 0.541

In both experiments, the same eight Japanese participants in their 20s con-
ducted the survey. We showed the participants a randomly selected pair of im-
ages. Then, we asked them to choose intuitively which image looked more pointy.
No more instructions were given in the process. After the participants answered
for all the 12C2 = 66 pairs of images, we obtained the ground-truth scales in
the range of [0,1] by applying Thurstone’s paired comparison method [11] to the

12C2 × 8 = 528 answers.
The results of the two experiments are shown in Table 1. As a metric, we

measured Pearson’s correlation between the ground truth scale and the calcu-
lated pointedness. As a weight function for the calculation of pointedness, we
prepared a simple function with a hyper-parameter a, which is defined as

wa(n) =

(
n− 8

7

)a
(9 ≤ n ≤ 15). (6)

As comparative methods, we used a circularity measurement defined by Eq. 1.
Since this measurement is thought to measure the opposite concept of our point-
edness, we calculated −Circularity and Circularity−1 instead.

We can observe that the proposed method gives nearly equivalent correla-
tions to circularity in both of the experiments. However, the correlation 0.772
given by the inverse of circularity in the second experiment appears surprisingly
large. To analyze this, we plotted the calculated pointednesses and the inverse of
circularity values in Fig. 4. Here, we used the sigmoid function and the weight
function with a = 0.5 for the calculation of pointedness. From this, we found
that the image of “lizard” had a strong impact on the calculation of the corre-
lation in the second experiment because its ground-truth was much higher than
the others. Therefore, we performed the second experiment without using the
“lizard” image, where the results were closer to the expected correlations. From
these, we recognized one limitation of our method that the calculated pointedness
mainly focuses on some specific pointy points in an image, not the whole shape
as we humans do, resulting in few differences among relatively pointy images
(e.g. “chicken”, “bat”, and “lizard”).
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(a) Experiment 1: Artificial shapes
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(b) Experiment 2: Natural shapes

Fig. 4: Scatterplot of the calculated pointednesses (left) and inverse of circularity
values (right) for images used in each of the experiments.
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Fig. 5: Example of cloud images and their pointednesses calculated by our
method.

5 Application to More General Images

Pointedness can be measured from arbitrary gray-scale images with our method.
Therefore, we applied our method to several images of clouds since those images
seemed to suit our method well. We selected 10 images from Flickr6, which
captured one or more clouds clearly in the center of the images. Then, we sorted
those images according to our pointedness metric.

The result is shown in Fig. 5. Here, we set the threshold t = 10, a relatively
low value, so that our method can consider the texture patterns of the surface of
the clouds for the pointedness calculation. We then calculated gray-scale images
and resized them to 512 × 512 pixels. Here, we chose a weight function with
a = 0.5.

From Fig. 5, we confirmed that the broad tendency of the calculated point-
ednesses matches our perception, although the order and the rating might vary
from person to person.

The application to arbitrary images is a very difficult task. We recognize that
our current method mainly focuses on contours of shapes in an image and thus
in the next step, we need to consider pointy features of objects which do not
appear as contour information. However, the subjective evaluation conducted in
Sect. 4 showed that our proposed method could capture pointedness reasonably
well. Furthermore, our method could also measure pointedness of a sub-region
of an image by applying a mask to a feature map.

6 https://www.flickr.com/
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Our method is designed to capture human perception. Thus, the main ap-
plication of our method is to investigate and analyze psychological phenomena
around human vision such as sound symbolism [7] and synesthesia [3] based
on data-mining approaches. Quantifying those phenomena would give meaning-
ful insights for computers to understand human perception in vision-processing
related tasks.

6 Conclusion

In this paper, we introduced the concept of pointedness, which describes how
pointy an image is perceived by humans. Moreover, we proposed a method to
measure the pointedness from an arbitrary gray-scale image. We conducted two
experiments to investigate how well our method can capture human perception
towards binary images, and confirmed that our method gives a high correlation,
indicating that it has a correlation with human perception towards pointedness.

Future work includes the application of the proposed method to attention
maps generated by deep learning models in order to further analyze the rela-
tionship between computer vision and human perception.
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