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Abstract Natural Language Processing and multi-modal analyses are key elements

in many applications. However, the semantic gap is an everlasting problem, leading

to unnatural results disconnected from the user’s perception. To understand semantics

in multimedia applications, human perception needs to be taken into consideration.

Imageability is an approach originating from Pyscholinguistics to quantize the human

perception of words. Research shows a relationship between language usage and the

imageability of words, making it useful for multimodal applications. However, the

creation of imageability datasets is often manual and labor-intensive. In this paper,

we propose a method using image data mining of a variety of visual features to esti-

mate the imageability of words. The main assumption is a relationship between the

imageability of concepts, human perception, and the contents of Web-crawled im-

ages. Using a set of low- and high-level visual features from Web-crawled images,

a model is trained to predict imageability. The evaluations show that the imageabil-
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ity can be predicted with both a sufficiently low error, and a high correlation to the

ground-truth annotations. The proposed method can be used to increase the corpus of

imageability dictionaries.

Keywords Imageability · Psycholinguistics · Language and vision · Concept

semantics · Semantic gap · Image mining

1 Introduction

Whether it is multimedia retrieval applications, consumer applications, recommen-

dation engines, or Big Data analyses in Web and Social Media in general, the use of

multiple modalities became ubiquitous for multimedia applications. However, the so-

called semantic gap is an everlasting problem for various multimodal applications. As

semantics are often hard to transfer between modalities, application results can often

be perceived disconnected from the user, a human. Whether it is processing text or

images, human perception and related semantics are often ignored. As many applica-

tions deal with language, it seems reasonable to include a metric of human perception

into the processing of language.

Imageability is a concept originating from Psycholinguistics. It quantizes the hu-

man perception of words on a scale from, in layman’s terms, abstract to concrete. As

a metric, it describes the ability to conceptualize a term as a mental image. A high-

imageability word is usually something rather concrete, for which the average person

has an instant and rather clearly defined mental image, like car or pizza. In contrast,

a low-imageability word is something rather visually unclear, which is more of a

concept than an actual object, like the word transportation or nutrition. As a conse-

quence, imageability of words also correlates with text difficulty, as abstract, unclear

words are often harder to grasp. Research in Psychology shows, that this relation-

ship of language and imageability has further implications for language acquisition

for children [8][30], language understanding [39], and the use of grammar [42]. The

concept of imageability, along with example images for different imageable words,

is visualized in Figure 1.

It seems natural to put this research in a Natural Language Processing (NLP)

context, and use it for multimodal applications. While there have been multimedia

applications which include Psycholinguistic concepts, there are various opportunities

for other fields to include such metrics, too. It is commonly used as a complemen-

tary feature for sentiment research [2][37], but found its way into recent multimodal

research using text and image [52]. For automatically generated image captioning,

such metrics could be used for quality assessment, both in terms of understandability,

analyzing how text and image complement each other, or assessing the accessibility

of texts.

Unfortunately, existing dictionaries used in Psycholinguistics are typically cre-

ated through labor-intensive experiments. This can range from annotations by hand

from test subjects in academic studies, to crowd-sourced surveys using online plat-

forms like Amazon Mechanical Turk1. While there are a number of dictionaries for

1 https://www.mturk.com/
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leaf (imageability 6.08) early (imageability 3.90)

Fig. 1: The imageability of words. High-imageability words like leaf are concrete

terms describing actual objects. Thus, when comparing images related to the same

word, the images are visually similar. In contrast, low-imageability words like early

are often concepts or abstract ideas. Images related to these words share fewer vi-

sual similarities. Imageability is commonly described as a seven-level Lickert scale

ranging from very unimageable to very imageable.

many languages, they tend to be rather small, especially compared to the word cor-

pora of natural languages.

In this research, we propose a method using image-based data-mining to estimate

the imageability of words. The core assumption is that imageability is a quantization

of mental image of a certain word, describing how we perceive it. Thus, we further

assume that there is an intrinsic relationship between the imageability of words, how

we perceive the world around us, and how we capture this in images we upload to

Social Media platforms.

Therefore, in our method, we first crawl large image sets for words for which

we have ground-truth scores for imageability. Next, a data-mining approach using a

set of visual features is applied to all images. The visual features are selected to ex-

press a variety of visual characteristics spanning from very abstract to very concrete.

Therefore, our approach includes a mixture of both a set of low-level, machine-based

features, and a set of high-level features closer to the human description of images.

For each word, similarity matrices to describe the structural resemblance of all im-

ages in the same image sets, are calculated. Last, a model is trained to regress the

imageability for unknown words. The model is evaluated using a series of testing

data sets. In the experiments, we first evaluate the general performance of the pro-

posed method in comparison to our previous work. Then, the feature selection gets

a closer inspection, to investigate which features can excel for which type of word.

Finally, we discuss some implications following the results of each experiment.

The paper is structured as follows. In Section 2, previous research on imageabil-

ity, its applications, and our previous research on this topic is discussed. The core

assumption of how image data crawled from the Web correlates to the human per-

ception of imageability is discussed in Section 3, together with our proposed method

and the used mixture of low-level and high-level visual image features. For the eval-
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uation, we prepared a word corpus with imageability annotations, and a large set of

images for up to 1,000 words, discussed in Section 4. Section 5 analyzes the proposed

method in four experiments, looking at the choice of image features, the choice of re-

gressor, dataset size, and how the choice of visual feature affects the performance for

lowly or highly imageable words. Section 6 discusses the found results, as well as

some implications for future applications, before concluding the paper in Section 7.

2 Related work

The concept of imageability and human perception in language understanding goes

back to the 1960s, starting in the field of Psychology. From there, the concept natu-

rally found its way into Psycholinguistics, Multimedia research, and Computer Sci-

ence.

In the following, we will first look into research of imageability itself, starting

with Psycholinguistics. Next, an overview on recent research applying psycholin-

guistic features in Multimedia (and Multimodal) research is outlined. In the end, other

applications, where imageability research could have an impact, are discussed.

Psycholinguistics. In 1968, Paivio et al. [32] first proposed the concepts of image-

ability, concreteness, and meaningfulness as measurements for human perception of

natural language. Since then, there has been ongoing research, connecting language

understanding and language acquisition to the imageability of words and concepts.

The imageability of verbs has implications on grammar usage for different con-

texts [42], which could provide helpful knowledge to create more natural language

depending on context. There is also a relationship on imageability of words to age of

acquisition and reading comprehension, especially relevant for children [8][30]. Due

to this, there are further implications for research related to dyslexia [23]. There is a

relationship of text difficulty and concreteness, when it comes to abstract words, as it

represents the fundamental semantic distinction between them [39]. In Neuropsychol-

ogy, there is research on the neurological process of word understanding in relation

to their imageability [16]. There are imageability dictionaries for English [10][36] as

well as other languages [41][51]. However, the dictionary creation process is labor-

intensive, as the annotations are commonly obtained through crowd-sourcing or user

studies involving test subjects.

Visual concept analysis. In Multimedia research, the analysis of visual concepts have

been ground for multiple works. Prominently, this research involves estimating or

quantifying relationship of different concepts. Therefore, it derives hierarchical struc-

tures or ontologies [21][25] of concepts from their visual relationships. Other work by

Yanai and Barnard [50] analyzed image region entropy to identify visualness of ad-

jectives, later continued by Kohara and Yanai [26] to analyze adjective-noun pairs.

Divvala et al. [13] proposed a method to analyze visual features to create visual

knowledge databases with unsupervised crawling. Tang et al. [46] look at social-

aware tagging by including user-information into the training to remove noisy and

unimportant tags.
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Imageability estimation. In the field of Natural Language Processing, researchers

have been working towards the estimation of imageability or concreteness using text

data mining techniques. Ljubesic et al. [28] create a word embedding predicting the

concreteness and imageability of words within and across languages, evaluating with

English and Croatian. Similarly, Charbonnier and Wartena [5] predicted the word

concreteness and imagery from image captions using text data-mining methods. Hes-

sel et al. [17] use the multimodal abstractness of concepts to learn better image/text

correspondences. They conclude an improved retrieval performance through the in-

troduction of concreteness and imageability in word embeddings of multimodal data

sets. In a similar sense, Hewitt et al. [18] use the concreteness of concepts across

multilingual image datasets to improve the results of translations.

For our work, we were interested in how much knowledge of imageability can

be gained from just analyzing the visual characteristics of image datasets. In our pre-

vious work [24], we proposed the idea to estimate the visual variety of terms as a

measurement of abstractness. The idea is to quantize the mental image of different

concepts, based on the variety in their visual characteristics. The proposed method

is a data-driven approach which first creates ideal image sets using recomposition of

existing datasets. Then, a naı̈ve clustering-based approach is applied on the visual

features to determine the variety. The evaluation covered a small number of 25 terms

related to vehicles, which led to promising results for estimating variety gaps within

the same domain. However, as the method uses a single visual feature, the encoded

visual vectors are not exhaustive enough to compare data across different domains.

Additionally, experiments on a larger scale turned out to be unfeasible due to limita-

tions in the data acquisition process. To the best of our knowledge, there has been no

similar research which employs visual concept analyses for imageability estimation.

While our previous work looked at visual variety of related concepts, a relationship

between this and the concept of imageability is undeniable. Thus, in this paper, we

will apply similar ideas to the concept of imageability. As such, we propose a more

sophisticated data-mining approach using a variety of visual features to encode the

visual characteristics of each word from various angles, and then train a model to

estimate imageability scores for words based on ground-truth data.

As the use of imageability for multimedia applications has been evaluated be-

fore [17] [18] [52], we foremost focus on the actual estimation of imageability labels

for extending existing datasets, evaluating our results against ground-truth data from

Psycholinguistics. Furthermore, we adapt Ljubesic et al.’s method [28] as a compari-

son method to show how the results of mining textual data differs to visual data.

Multimodal applications. Some works in the previous paragraph already introduced

use-cases of concreteness for retrieval and translation applications.

Tanaka et al. [44] use content concreteness of documents to find comprehensible

documents, finding a positive correlation between concreteness and content com-

prehensibility. Furthermore, there is also research in using deep networks to model

cross-domain information between text and images [40] [45] [47].

Other opportunities of imageability are not yet heavily researched for multime-

dia purposes. However, there have been some applications using Psycholinguistic

metrics as complementary features in recent work. Zhang et al. [52] analyzed the
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implicit relationship of image and text for posters and advertisements. They look at

examples, where the depicted meaning of the image contents and the text slogan is

parallel equivalent, parallel non-equivalent, or non-parallel, meaning whether they

try to convey the same, or opposite messages to the viewer. Therefore, rather than

comparing whether they share the same contents, it tries to correlate the intrinsic

meaning of both image and text. In the evaluation, a mixture of nine different fea-

tures from image and text, including Psycholinguistic metrics like specificity and

concreteness, are analyzed. The work makes some interesting conclusions on which

kind of feature decodes what kind of hidden information, when it comes to intrinstic

semantic relationships.

Another typical use-case for Psycholinguistic features is sentiment and emotion

analysis. Here, the goal is to find the sentiment triggered when reading a certain

comment, looking at a certain image, reading a certain news, and so on. For sen-

timent evaluation, there are datasets such as LIWC [34] and Empath [15], which

connect words and language to motivation, thoughts, emotions, and other sentiment-

based numerical ratings. Sentiment and emotion research analyzes the human gap of

multiple modalities in regard of human perception. As such, it became the topic of

regular workshops for both Multimedia [37] and Natural Language Processing con-

ferences [2].

Other applications. Other than multimodal applications and sentiment, Psycholin-

guistic features can be used in a number of other fields, too. Computational linguis-

tics, or Natural Language Processing on its own, can profit from such metrics as a

complement to sentiment embeddings. Li and Nenkova [27] use imageability, con-

creteness, and meaningfulness to predict sentence specificity. The proposed method

can be used to estimate text difficulty or create simplified versions of text.

There is also the recently established new field called Explainable AI [38] (XAI).

In XAI, the goal is to get an better understanding on the operation of black-boxed

AI models. Therefore, the internals of neural networks are analyzed, to see how the

output of a classifier can be explained. The nature of a black-boxed model makes it

hard to verify results, but also to debug mis-classifications. As many multimedia ap-

plications use neural networks for classification of language, be it personal assistants

or translation tools, an additional insight on human perception can help to explain

mis-classifications or unnatural results. There have been analyses related to Explain-

able AI for the fields of aviation and medicine, where a faulty classification could

be potentially fatal [19][20]. As a measurement for human perception and underly-

ing semantics, a way to estimate imageability for a large word corpus could help in

gaining a better understanding of blackboxed models involving language and vision.

In summary, imageability and similar numerical metrics for quantizing human

perception have been part of Psychology research since the 1960s. In recent develop-

ment of multimedia applications, such metrics are becoming more and more ubiqui-

tous for multimodal applications as supplementary features for capturing the human

perception through multiple modalities. An example of this is the detection of emo-

tions and sentiments, often in the context of Web or Social Media data. With the
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rise of neural networks as the most common prediction model, Explainable AI is be-

coming a newly established field which yearns for additional insight on the hidden

semantic relationships.

3 Imageability estimation

In this paper, we propose a method to estimate the imageability of words using visual

feature mining on Web-crawled images. In the core assumption, we consider that

there is an intrinsic relationship between imageability scores and the perceived world

around us. This relationship is reflected in image data on the Web, due to its crowd-

sourced nature. While this can be both biased and subjective, photography and images

on Social Media somewhat captures how we see the world around us. A large set of

images related to a certain word will thus describe how the word can be represented

in different visual ways, what situation it is commonly in, what common backgrounds

(or varying backgrounds) for the said concept exist, and so on. This correlates to the

mental image we have of the same word, and thus the imageability of it.

In previous research [24], we looked at the visual variety of related words. The

proposed method recomposited a custom dataset to contain images in the same ratio

of sub-concepts as they would exist in real life. A dataset of vehicles would contain

as many cars, compared to airplanes and ships, as these ratios would be in the per-

ception of a common human being. Then, a simple data-mining approach using Mean

Shift clustering [9] on local feature descriptors is applied on the created datasets to es-

timate the visual variety of the said dataset. The research was evaluated with 25 words

related to vehicles and a small dataset of 2,400 images for each word. While the re-

sults looked promising within the same domain, the proposed data-mining method

is not exhaustive enough to compare words across domains. In this paper, we shift

the focus from variety gaps within related words to general-purpose imageability es-

timation. The method of clustering local descriptors is prone to noise, as too many

unrelated images will often connect clusters. When comparing car with sportscar,

the clustering-based approach can spot the difference of variety, but comparing car

to pizza will have trouble to find a reference point for comparison. In imageability es-

timation, both words would be similarly concrete. Thus, we propose a sophisticated

method using a cross comparison of similarity between all images in the dataset of

a word. Additionally, to successfully capture the characteristics of various concepts,

four additional visual features are introduced. Lastly, a model is trained to predict an

imageability score from the cross-similarities using ground-truth annotations from

Psycholinguistic dictionaries consisting of common words from various domains.

3.1 Approach

For now, we assume an existing dataset with imageability scores attached. For each

word, a sufficiently large number of images from crowd-sourced origin is needed for

the data-mining to work as expected. Imageability is described as a numerical rating

on a scale between rather concrete (usually high values), and rather abstract words or

concepts (usually low values).
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Concrete words are easy-to-grasp concepts, which are very imageable, but lack a

variety. Think of the word car; while there is a large variety of different cars, most

of them look fairly similar in their fundamental shape, form, and choice of colors.

Furthermore, the situation a car is in would usually be very similar —A street, or

scenery, but very rarely in the middle of the rain forest, or in the air (like a plane

would be, on the other hand).

Abstract words, in contrast, are often much less imageable. They tend to have a

much higher visual variety, just through the nature of them being usually not objects,

but atmospheres, situations, or concepts, on their own. Therefore, they cannot usually

be described with single images, and images of the same abstract word will look

very different from another. For example, the dataset for the word approach would

probably contain many technical figures, but its visual characteristics are not well

defined.

The proposed method exploits these visual characteristics. High-imageability words

are expected to have a high similarity across all their images. In contrast, Low-

imageability words are expected to have a significantly lower similarity across their

images.

Using a variety of visual features (Discussed in Section 3.2), a similarity matrix

is built. For each visual feature, one histogram describing it is computed for each

image. By cross comparing all images, the similarity of all histograms is calculated

and inserted in a matrix of size n× n for n images. For a high number of images,

the similarity matrix reaches a high dimensionality, which makes it hard to train a

model with the similarity matrix as input. Furthermore, the similarity matrix changes

with the order of processed images, despite the order having no meaning in itself. To

solve these issues, the eigenvalues of the said similarity matrix are computed. The

eigenvalues contain the characteristics of the similarity matrix, meaning that the vi-

sual characteristics of low-imageability words’ visual features vs. high-imageability

words’ visual features are also encoded in them. Meanwhile, a sorted set of eigenval-

ues has a significantly smaller dimensionality than the matrix, and it is invariant to

changes in the order of images.

Lastly, a model is trained to regress imageability, using the previously calculated

sets of eigenvalues as input. Existing imageability annotations from Psycholinguistic

dictionaries serve as ground-truth values.

The step-by-step algorithm is shown in Figure 2 and further described in Algo-

rithm 1.
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input : Word

output: Imageability label

1 (1) data preparation;

2 images←− image dataset;

3 words←− psycholinguistics dataset;

4 f eatures←− list of visual features;

5 for image ∈ images do

6 image text←− read textual metadata of image;

7 if image text ∩words 6= /0 then

8 for word ∈ image text ∩words do

9 imagesword ←− image;

10 end

11 end

12 end

13 (2) feature extraction;

14 for word ∈ words do

15 for image ∈ imagesword do

16 for f eature ∈ f eatures do

17 imagesword, f eature,image←− extract visual features;

18 end

19 end

20 for f eature ∈ f eatures do

21 similarity matrixword, f eature←−

cross comparison similarity for all in imagesinput, f eature;

22 end

23 end

24 (3a) training;

25 for word ∈ words do

26 Xword ←−
fm

i=1 Eigenvalues of similarity matrixword,i(for m features);

27 Yword ←− wordsword ;

28 end

29 train regression model Y on X ;

30 (3b) prediction;

31 X ←−
fm

i=1 Eigenvalues of similarity matrixinput,i(for m features);

32 predict Y from X ;

33 out put←− Y ;

Algorithm 1: Pseudo-code for the proposed method.
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Fig. 2: Flowchart of the imageability estimation process. For each word, its corre-

sponding image set gets analyzed based on a set of low- and high-level visual fea-

tures. A cross comparison of all images is performed to create a separate similarity

matrix for each visual feature. The eigenvalues of the similarity matrices are used to

regress an imageability score. Vertical labels on the left refer to the corresponding

section in Algorithm 1.

3.2 Feature selection

To sufficiently encode the visual characteristics of each image set, the analyses need

to look at visual features from multiple angles. Computer vision and object detec-

tion algorithms traditionally focus on low-level representations of visual characters.

Patterns, edges, and color spaces are encoded and represented in forms of feature vec-
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tors. While this is important for many parts of computer vision, it also leaves human

perception of concepts out of the image. For a human, the situation or actual contents

of a picture is often more important than a global gradient description. Low-level

features also do not contain actual meaning, if not trained against ground-truth data.

Therefore, the proposed method looks at the problem from two angles. First, low-

level features are analyzed to have a general description of the scene and objects.

This will furthermore relate to how humans perceive colors and contrasts, which are

important parts of the core assumption of imageability. Second, high-level features

are extracted using pre-trained models from Computer Vision and Multimedia appli-

cations. Here, we are interested in the actual image contents and compositions. The

features are used to complement the visual feature representations in what and how

things are displayed in each image, while putting the actual technical details (e.g.

low-level details) to the side.

3.2.1 Low-level features

Low-level features look at the visual characteristics of each image how a machine

would describe them. They encode local and global trends of edges, colors, and gra-

dients of the processed image. While these are important characteristics and the basis

for object detection and scene understanding, the actually encoded patterns do not

possess much of a meaning on their own. In this paper, the following low-level fea-

tures are used:

Color distributions. The color distributions are captured as one visual feature. In

context of imageability, this feature can encode the mood and the atmosphere of each

image through the overall distribution of used colors. The atmosphere of a concept

could be captured by finding reoccurring color patterns like warm or cold colors.

Furthermore, this feature encodes information related to visual adjectives like yellow

or bright.

Global gradient descriptions. Global features are important for scene analysis. They

are, among other use-cases, prominently used for Web-retrieval engines. Based on an

encoding of gradients, and their orientation, the feature representations give informa-

tion on global pattern distributions of the images, such as how noisy an image is to

the eye, whether there are many objects, and contrasts.

Local gradient descriptions. Local features are often used for object detection, as

they can be used to distinguish the visual characteristics of different objects. In a

sense, they decode the patterns of an object, and what makes it look like the object.

In combination with a Bag-of-Visual-Words [11] model of the local gradient descrip-

tors, it creates a histogram encoding reoccurring visual patterns within the image.

While this sounds more high-level than just edges, it is a different level of abstraction

than actual high-level features, as the found patterns do not necessarily share mean-

ing.

Actual implementation details of the feature extraction can be found in Sec-

tion 5.1.
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3.2.2 High-level features

High-level features look at the visual characteristics of each image how a human

would describe them. While colors, contrasts, and edges are also part of how humans

see objects, they have few actual meanings in itself. The actual meaning comes from

associating pattern recognition with ground-truth labels, which a model can be trained

to find, but is not an actual part of the visual feature representation. In this paper, we

investigate three characteristics of high-level representations:

Image theme. First, the image theme is the overall setting of an image. Examples of

this could be: indoor, landscape, or architecture. This is not an actual description of

displayed objects, but rather the situation or scenery where all the displayed objects

are in. The setting of an image plays a large role for similarity of images, as it is

largely an encoding of backgrounds, which are often the largest part of each image in

terms of surface area.

Image contents. Second, the image contents are actually displayed objects in the

scene. A scene of two dogs and their owner in front of a crowded street might contain

the objects: dog 2, human 1, cars 3, and so on. An object frequency along with an

object description gives additional insights of the nature of each image. Because,

while having different to colors or patterns, two images are perceived rather similar

to humans if one contains a black small nude cat and another contains a white large

fluffy cat.

Image composition. Third, image compositions give another insight on how impor-

tant things are for the scene. Images with a certain object in the center of an image

might directly relate to this object, while the same object in a corner of another im-

age might just be part of the scenery. Furthermore, concrete, high-imageability words,

might correlate to objects being in the center, while abstract, low-imageability words,

might show other characteristics or general trends.

Pre-trained models are used to encode these characteristics and to describe them

in the form of likelihood histograms. The resulting histograms are then used in the

cross-comparison step proposed in Section 3.1 above. Actual implementation details

in which models are used for the evaluations are given in Section 5.1.

4 Dataset

In our research, we employ two types of datasets. First, a dictionary with English

(language) words and imageability annotations, which provides the ground truth for

both the training process and the evaluation. Second, a large number of images for

each word, which will be used for visual feature extraction.
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4.1 Imageability dictionary

There are a number of imageability or concreteness dictionaries in different lan-

guages, including English [10][36], Indonesian [41], and Cantonese [51]. As de-

scribed before, imageability dictionaries try to quantify the human perception of

words. The most common scale is a seven-level Likert scale, averaging the percep-

tion over all test subjects. Level 1–3 words would be things where one can not grasp

a mental image to describe it. In layman terms, when talking about nouns, it might

be a rather abstract concept, like peace or the word abstract itself. It could also be

a conjunction, which are naturally hard to visually image, like because. A level 5–7

word on the other hand is something rather concrete, which is easy to grasp. It could

be a dog or the color red.

Datasets for imageability are commonly created by hand. Using crowd-sourcing

or surveys, a pre-selected set of words is judged by each test subject. It could be mea-

sured using pair comparisons, which might arguably lead to more accurate results.

However, the sheer amount of labor involved in this process results in most studies

using Likert scales instead.

For evaluating the proposed method, we will look at the English language. Con-

cretely, we use the datasets by Reilly et al. [36] and Cortese et al. [10] as a baseline.

These datasets provide the results as a Likert scale averaged over all test subjects,

in the range of [100, 700]. While there are other datasets, combining a large num-

ber of different datasets might result in incomparable results, as it is unclear whether

all experiments have been conducted in the same way. The popular, but also rather

dated, MRC database [7] has not been used directly, despite it being larger than the

previously cited sources. However, the first dataset used [36] is a modified version of

the MRC data. It focuses on the high- and low-end of the spectrum, removing large

parts of mid-Imageability terms from the dictionary. In that process, they also filtered

out obscure and uncommon terms, making for a cleaned-up fork of the MRC data.

There is no significant overlap nor contradictions in both word corpora. Further-

more, while the former is only composed of nouns, the latter includes other parts-of-

speech. In case of overlap, we take the average of both dictionaries.

Lastly, while Likert scales are very common in Psychology, Computer Science is

used to either percentual results, or a normalized scale of [0,1]. Therefore, for pure

understandability of the evaluation results, we normalize the interval of [100, 700] to

[0, 100].

4.2 Image sets

In previous research [24], we looked at the task of measuring the visual variety of

concepts using a dataset-driven approach. While the actual relationship of visual va-

riety to imageability measurements remains to be verified, they are presumed to be

similar. The approach looked at how the mental image of vehicle is related to its sub-

ordinate concepts like car, boat, or plane. The core assumption was, that the ratio of

such sub-concepts relates to how humans create a mental image of the parent con-

cept, as a sub-concept daily seen in daily life (car) may have a stronger influence
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than a concept rarely seen (jet). Thus, for each concept, a custom dataset was created

using the WordNet [31] hierarchy of its hypernyms and a popularity measurement to

determine the importance of sub-concept images in its parent datasets. The resulting

dataset was considered to be ideal, meaning that the dataset composition resembles

the frequency of subordinate concepts in real life, which was assumed to directly re-

late to the visual variety of the parent concept. While the approach led to promising

results, it came with several downsides:

– The number of images available for very obscure sub-concepts could heavily bot-

tleneck the re-composition of its parent concepts. This was especially true, if the

popularity of the said sub-concept was estimated unexpectedly high, be it through

noise or simple error.

– As it was tied to WordNet [31] and ImageNet [12], it would not work for words

which were not available in both. It also fully relied on a hierarchy of hypernyms

and hyponyms not available for all terms. Furthermore, ImageNet is rather limited

in terms of both term availability and image availability, and only provides image

data for nouns.

– A proprietary API was used to estimate a popularity metric for sub-concepts

based on Web search engine hit results. This led to unnecessary cost.

– The process was mainly about the re-composition of parent concepts, so the most-

bottom subordinate concepts would not benefit from the majority of the proposed

contributions.

Due to these limitations, prior evaluations were only performed on a rather limited

dataset of 25 terms related to vehicles, and about 2,400 images each.

Therefore, for this research, we propose a simplified method crawling image data

from Social Media platforms for each word directly. The whole process of dataset

acquisition is shown in Figure 3. The crowd-sourced nature of our noisy Web-based

origin dataset ensures a composition which comes close to how a human perceives

the concept. The simplicity of direct crawling, on the other hand, ensures that we can

retrieve a larger number of images for a much larger number of words. Therefore,

we can evaluate the stability of our proposed algorithm from Section 3 with a large

number of words. As the proposed dataset creation method does not rely on WordNet,

it implicitly groups ambiguous terms, and it can be used for terms not available in the

WordNet hierarchy, or is insufficient (e.g., there are multiple levels of hierarchy with

no siblings). Lastly, it comes without extra post-processing or manual labor needed

for recomposing the dataset.

Using the imageability data described in Section 4.1 as a basis, a large number

of images for each word with imageability annotation is crawled. As a source for the

images, we use the YFCC100M [48] dataset, which is crowd-sourced based on the

US photography social media platform Flickr2. YFCC100M consists of 100 million

images posted to Flickr up to 2014, annotated with various text-based annotations like

a title, a description, user taggings, and more. The dataset also comes with 1,570-class

visual concept classification. This can be used as a high-level feature on its own and

will be discussed later. For our research, we use the images themselves for visual

2 https://www.flickr.com/
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feature data mining. Furthermore, the text-based annotations are used to identify a

relationship between images and words.

For each image, if a word from the imageability dictionary is contained in one of

the text-based annotations (title, description, or user-tagging), the image and the word

are considered as related to each other. Thus, we crawled the YFCC100M dataset,

looking for images where entries from our imageability dictionaries appear in the

text annotations. In case of multiple related words, the image is flagged to be part of

the image set for each word.

To not bias the proposed method with different similarity matrix sizes, an equal

number of images is used for every word. As the frequency of images for different

words varies, many words are harder to crawl than others. For each word, the first

n images retrieved in the crawling process are used for the evaluation. Furthermore,

there is a large amount of noise and mis-classifications, which is natural for crowd-

sourced Web-based data. Noise, like unrelated images, is expected to be averaged

out if the number of images is large enough. For abstract words, the noise ratio is

naturally much higher, as it is hard to put a concrete label on very abstract words.

This characteristic helps our proposed method, as a high noise ratio results in a low

cross-similarity between images and thus naturally produces the expected similarity

matrix for abstract terms. The noise in lowly imageable word datasets is also shown

in Fig. 4 in the next section.

5 Evaluation

The goal of this research is to estimate imageability scores using data mining on vi-

sual features of crowd-sourced images. We discussed the proposed method using a

variety of low-level and high-level features to provide a view on the visual character-

istics from various angles.

In the following, we outline the five experiments conducted using a large Web-

crawled dataset. After discussing details on the environment of the analyses, we first

show the results when using different visual features. Then, we analyze the dataset

size, and how a larger number of images can influence the resulting error, as well as

how the choice of the regression model makes a difference for the proposed method.

Lastly, two experiments will analyze which feature excel for which kind of words,

both considering low-imageability vs. high-imageability as well as different parts-of-

speech.

5.1 Environment

5.1.1 Feature selection

The evaluations use a combination of seven different visual feature sets. First, three

visual features will encode the low-level visual information of each image:
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Imageability data Image data

Reilly’s

dataset [36]

Cortese’s

dataset [10]
YFCC100M
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Word
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Visual
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scores for

each word
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visual feature

extraction

Used as a

high-level

feature (H1)

Image

selection

Icat ∈ [100,700]

Fig. 3: Flowchart of dataset acquisition. The blue boxes show external origin datasets,

while the green boxes indicate data crawled from these.

(L1) The HSV color feature encodes the color distribution in the HSV color space.

For the color features, it results in the best prediction performance for experiments

when using 36 bins for the Hue and Saturation axes each, resulting in a 72-dimensional

histogram for each image.

(L2) The SURF feature uses the SURF local feature transformation [3] to generate

a Bag-of-Words model [11] using k-means clustering. SURF is a common feature

used in object detection or reconstruction. The resulting 4,096-dimensional histogram

describes the occurrence of visually similar sub-regions based on gradients.

(L3) The GIST feature uses the GIST descriptor [14] commonly used for scene analy-

sis. Based on this global gradient encoding, we generate a 960-dimensional histogram

for each image.

Second, four high-level features complement the low-level features above to pro-

vide additional information closer to human perception:

(H1) The Image theme feature captures the general concept of each image. We use

the YFCC100M-based autotaggings provided by the dataset (as shown in Figure 3).
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The taggings include concepts like inside, nature, architecture, and more. The result-

ing histogram is composed of 1,570 classes, based on the probability of each concept

being related to the image.

(H2) This Image content feature encodes objects in each image. We use the pre-

trained model YOLO9000 [35] to detect concrete objects found in each image. The

frequency histogram is based on the number of detected instances for each class. The

model YOLO9000 was specifically chosen because of the large number of classes,

as newer versions of YOLO come with a substantially smaller number of classes.

The 9,418-classes proposed in YOLO9000, however, turned out to be too many for a

proper histogram comparison. To establish a middle ground, WordNet [31] is used to

group classes along their hypernyms. The dimensionality is reduced to 1,401-classes

after merging three levels of hypernyms.

(H3) The Image composition feature encodes the location of objects in the image.

Again, YOLO9000 is used to detect objects within each image. Using an overlapped

n×n grid, we generate a histogram describing the number of objects within each grid

cell. n is set to 10, resulting in a 100-dimensional histogram.

Each feature is used to calculate a similarity matrix as outline in Section 3.1. The

eigenvalues of the similarity matrix are used as input for the regression. If sorted by

size, the top eigenvalues contain the majority of structural information of the matrix,

and are least affected by noisy data. Thus, we use the top 30 eigenvalues of each vi-

sual feature to simplify the training. This heavily decreases dimensionality and thus

complexity for the training process, especially when working with combined fea-

tures. For combined features, the resulting eigenvalues for each feature have been

concatenated before inserting them into the regressor.

For all implementations, Python 3.7 and OpenCV 3.20 [22] is used. For YOLO9000,

the Python implementation YOLO3-4-Py [49] is used. For histogram comparisons,

the normalized cross-correlation metric is used.

5.1.2 Dataset

Following the process discussed in Section 4, datasets with ground-truth imageability

annotations for up to 1,148 words (for 2,500 images each) and up to 587 words (for

5,000 images each) have been obtained by crawling the first approximately one sixth

of the YFCC100M dataset. The data can be increased for a bigger dataset and more

accurate results, but we decided to stop further crawling at that point due to feasibility

in processing time. As many words are much harder to obtain than others, the number

of words available shrinks with the number of images wanted for the evaluation.

For the majority of evaluations, if not indicated otherwise, a dataset having 587

words with 5,000 images each has been analyzed. We found, that this gives us a good

balance of a sufficient number of images for data-mining, while having a sufficient

number of training samples, and still being feasible in terms of processing power. It

spans 501 nouns, 33 adjectives, 18 adverbs, 11 verbs, and 24 other parts-of-speech 3.

3 Parts-of-speech are obtained using NLTK [29] and may thus have slight error due to ambiguities.
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Dataset for breakfast

Predicted value 591 (GT: 628)

Dataset for coast

Predicted value 607 (GT: 588)

Dataset for challenge

Predicted value 438 (GT: 396)

Dataset for need

Predicted value 377 (GT: 326)

Fig. 4: Example of image datasets and their predicted imageability. For high-

imageability words like breakfast, the resulting dataset is rather homonomous, having

many similar scenery or objects in each image. In contrast, low-imageability words

like need result in rather noisy datasets, often not clear why images belong to the

dataset due to the vagueness of these abstract concepts. This noise is expected and

used by the proposed method to predict a fitting imageability score. The predicted

results are in the range [100, 700].

The average imageability in the training dataset is 67 (testing: 70) with a standard

deviation of 20 (testing: 17). Thus, the dataset is biased towards highly imageable

terms, but still contains lowly imageable terms. A scatter plot of the test data set is

also shown in Fig. 5 in Sec. 5.2, together with results for the proposed and compara-

tive methods.

To investigate the effect of dataset size, we also tested the robustness against

different numbers of words (thus, training samples), and the number of images per

word.

Example images from the created image dataset are shown in Fig. 4.
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5.1.3 Regression model

For training and evaluation, the datasets are split in 80% of words for training and

20% of words for testing.

The evaluations, if not indicated otherwise, use Random Forest [4] as the regres-

sor. For comparison, an SVM-based regression and a shallow Neural Network have

also been tested. The former two use Scikit-learn 0.19.0 [33], while the latter is im-

plemented in Keras 2.0.6 [6].

The Random Forest uses 100 estimators. The SVM regression uses an RBF kernel

with C = 100 and γ = 0.001. The Neural Network uses a shallow architecture with

three Dense layers of 512 dimensions.

5.1.4 Evaluation metrics

All experiments are evaluated using two metrics: First, the Mean Absolute Error

(MAE) with the best result being 0 meaning no error compared to the ground-truth

annotations. Second, the Pearson correlation coefficient (Correlation) with the best

result being 1 (or −1) meaning a perfect ordering (or perfect opposite ordering) of

the predicted scores.

In layman terms, a low error but low correlation would mean that most predicted

values are rather close to their actual ground-truth value, even if they would result

in the wrong ranking order due to slight differences. As the ground-truth seven-level

Lickert scale is chosen rather vague, and the dataset is furthermore biased towards

highly imageable words, this results in many samples in the upper third of the results.

Following this, it is possible to have a very low error but mixed correlation results.

The opposite would be true if there is an in-general good correlation between

the predicted samples, but a couple of very strong outliers heavily influencing the

MAE. This is true for some of the cases in the analysis of parts-of-speech, where

the test dataset has a very small number of samples. Here, many results share the

correct relative order of high- vs. low-imageability predictions among the same part-

of-speech, but the error can be rather high as the training data consists of nouns,

maybe unfit for the evaluated part-of-speech.

5.2 Results

In the first experiment, the proposed method has been evaluated on the dataset of 587

words with 5,000 images each. Table 1 shows the results for each feature selection. It

reaches the best results with an error of 10.14 and a correlation of 0.63. The proposed

method uses a combined vector with all high-level and low-level features except L3

(GIST). When including L3, it results in a slight decrease to an error of 10.33 with a

correlation of 0.62. Interestingly, H2 and H3 (both using YOLO9000 as there base-

line), have rather unfortunate results on their own, but can increase the performance if

combined with other features. This suggests that the visual features can complement

each other well enough, as they each encode a different kind of visual characteristics.

Overall, the combined high-level features perform better than the combined low-level
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Table 1: Results for different sets of features. While the ground-truth annotations are

based on the Likert scale, the scores have been normalized to the range of [0,100] to

improve understandability of the results. The dataset consists of 587 words and 5,000

images each.

Feature Correlation MAE

(1 : best) (0 : best)

L1: Color histograms 0.53 11.30

L2: SURF + Bag of Words 0.54 11.48

L3: GIST 0.42 12.05

H1: Image theme (YFCC100M-based) 0.62 10.19

H2: Image content (YOLO9000-based) 0.43 12.55

H3: Image composition (YOLO9000-based) 0.25 13.98

Combined Low-level 0.60 11.03

Combined High-level 0.61 10.18

Combined (Proposed method) 0.63 10.14

Comparative method 1 (Visual variety [24]) −0.01 67.31

Comparative method 2 (Text data mining [28]) 0.70 10.39

features. While the H1 feature set, which is part of the YFCC100M dataset, performs

good on its own, the combined proposed method with H1 excluded can still reach

an error of 10.25 with a correlation of 0.63. This means, the method works similarly

well for other datasets, where H1 features are not directly available.

For comparison, first, the algorithm used in our previous work [24] has been

tested on the new dataset. In [24], the variety of visual characteristics in a BoW

model is used to estimate a variety score for a dataset. It is closely related to the

main assumption of this paper, although this previous work does not mention, nor

evaluate, the possibility of imageability estimation. The result do not output, or have

been trained with, imageability labels, but output a variety score based on relative

variety differences between different datasets. Note that this previous work is largely

a dataset-driven method, so the algorithm is left simple intentionally. The dataset used

in this comparison has no relationship to the dataset-driven method proposed in [24],

but is given to evaluate the performance of the algorithm. The results show, that the

performance is vastly improved.

As a second comparative method, we compared our predicted imageability values

to the method proposed by Ljubesic et al. [28] We used the pre-calculated dataset

provided in their GitHub repository for the comparison. Note, that these may not

have used the identical ground-truth values for training, but the task of predicting

imaegability for dictionary extension is the same. Their method predicts imageability

entirely based on text data-mining, while ours exclusively uses visual characteristics

of images. This makes for an interesting comparison between different modalities.

The results show a slightly better correlation of 0.70 for the text data mining method,

but for the MAE, our proposed method wins with 10.14 versus an error of 10.39.

These mixed results suggest that it would be beneficial for future work to combine

both models and regress the values using both textual and visual characteristics of

multimodal datasets. However, due to the closely clustered results of most of the

testing dataset, a high correlation is very hard to achieve. The imageability for words
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Table 2: Comparing dataset sizes. In this experiment, we evaluate how the number of

words, or the number of images, relates to the overall performance of the approach.

For each experiment, the combined feature set (Proposed method in Table 1) were

used.

Dataset Correlation MAE

(1 : best) (0 : best)

Fixed number of images

156 words trained with 5,000 images each 0.51 12.17

312 words trained with 5,000 images each 0.62 10.58

469 words trained with 5,000 images each 0.63 10.14

Fixed number of words

469 words trained with 1,000 images each 0.54 11.27

469 words trained with 2,500 images each 0.57 10.87

469 words trained with 5,000 images each 0.63 10.14

closely neighboring on the Lickert scale is often very vague due to the seven-level

nature of the ground-truth annotations. As such, the relative order might be very hard

to decide, even for most human annotators. Following, we believe that the MAE

is a better metric for this, more closely capturing the trend of predictions (highly

imageable vs. lowly imageable) rather than the exact order of each result.

In the second experiment, to assess the stability of the results, the proposed

method has been tested with different dataset sizes. In Table 2, the results for a vary-

ing number of words and a varying number of images per word are shown. For the

varying number of words, the previously discussed dataset having 587 words and

5,000 images each has been used. The dataset has been split in 469 words for training

and 118 for testing. For the reduced number of words, we trained the model with

312 (66% of training samples) and 156 (33% of training samples), respectively. The

results confirm that the error is sufficiently stable for different dataset sizes. They

also show that the error decreases with the number of images. The complexity of our

method scales linearly with the number of images for visual feature extraction, and

quadratically for calculating the similarity matrices. The training time is negligible

for the most part, but the pre-processing of visual features and the matrices is a major

bottleneck. Using an RTX 2080 Ti (GPU-based visual features), and a Xeon E5-2697

(CPU-based visual features and similarity matrices), pre-processing the dataset for

the 5,000 image/word dataset took several weeks. As the number of available words

(i.e., training samples) for more images/word also further decreases, we did not look

into larger dataset experiments.

In the third experiment, the regressor has been exchanged. We tried Random

Forest, SVM, and a shallow Neural Network to determine which regression method

works best on our data. As shown in Table 3, Random Forest shows the best results

across all feature sets. The number of input eigenvalues makes a negligible difference

for the overall performance, but results in much faster training, as the dimensionality

of the input vectors vastly decreases. One concern is the dimensionality of the input

vectors versus the number of samples. While 30 eigenvalues per feature would result

in a dimensionality of 180 for 469 training samples, keep in mind that the models

are foremost training on the distribution of top eigenvalues. As such, reducing the

number even smaller results in only slight changes of the actual accuracy, as long as
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Table 3: Comparing regressors. In this experiment, we evaluate the chosen regressor

used for the imageability prediction. For each experiment, we evaluated the proposed

method using the combined feature set (Proposed method in Table 1) on a dataset

with 587 words and 5,000 images each.

Regressor Top 30 eigenvalues All eigenvalues

Correlation MAE Correlation MAE

(1 : best) (0 : best) (1 : best) (0 : best)

Support Vector Machine 0.13 14.82 0.11 14.83

Neural Network 0.61 10.82 0.60 11.11

Random Forest 0.63 10.14 0.63 10.17

the top-n eigenvalues containing the actual characteristics of the similarity matrix are

preserved. Sorted by size, for most concrete terms with very similar images, only the

very first eigenvalues contain much information, with a long tail of close-to-zero val-

ues. For more noisy datasets of abstract terms, this might vary, so we choose n = 30

conservatively to be on the secure side.

In the fourth experiment, the effect on different visual features on the image-

ability estimation for high- and low-imageability has been analyzed separately. As

high-imageability and low-imageability words correlate with concrete words and ab-

stract words, the visual characteristics of images in each word’s dataset are very dif-

ferent. While high-imageability words share similar concrete objects or scenes, the

low-imageability words have much more noise and mostly share similar atmosphere,

backgrounds, or the like. When splitting the testing dataset into two parts around

the median imageability value of the ground-truth labels, the resulting dataset can be

classified as one half of abstract, low-imageability words vs. one half of concrete,

high-imageability words. An analysis on what effect each visual feature has on the

results of these subsets is shown in Table 4. We can see that the low-level features

work better for abstract words, while the high-level features work better for concrete

words. This shows that the visual features can in fact complement each other for

different imageability words. The results also demonstrate that the concrete words

have a lower average error of 9.10 than the abstract sub-sets with an error of 10.90.

This is intuitive, as less imageable words are harder to grasp, as they do not create a

clearly defined mental image (like peaceful), or are outliers which most likely create

no reasonable dataset (conjunctions like because or somehow).

The fifth experiment shows preliminary results for different parts-of-speech. Sim-

ilar to the analysis of abstract vs. concrete words, we were interested in how the

performance of different features varies for different parts-of-speech. Unfortunately,

the obtained dataset predominantly consists of nouns, resulting in too few non-noun

samples for the random training-testing data split used in other evaluations. As a

workaround, the regressor is trained with only noun-samples. This leaves all non-

noun words for the testing dataset, which is enough to evaluate the trends for each

part-of-speech. The results in Table 5 show that different features can excel for differ-

ent parts-of-speech. Both the combined feature set using only the high-level features,

and the one using the proposed combination of features can predict the imageabil-

ity sufficiently across the majority of parts-of-speech. Similar to the overall results
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Table 4: Feature comparison for abstract words vs. concrete words. The regressor is

trained using the whole training data set. The testing samples were split in half around

the imageability median. The upper half is considered concrete, while the lower half

is considered abstract. The dataset consists of 587 words and 5,000 images each.

Features Abstract Concrete

Correlation MAE Correlation MAE

(1 : best) (0 : best) (1 : best) (0 : best)

Low-level

L1: Color histograms 0.32 11.36 0.00 11.25

L2: SURF/BoW 0.36 11.26 0.18 11.71

L3: GIST 0.20 12.18 0.20 12.82

High-level

H1: Image theme 0.26 11.37 0.19 9.32

H2: Image content 0.11 12.41 0.10 12.69

H3: Image composition −0.01 13.99 −0.05 13.87

Combined

Low-level features only 0.32 10.90 0.16 11.37

High-level features only 0.27 11.31 0.10 9.10

All (Proposed method) 0.26 10.79 0.17 10.11

Comparative Text data mining [28] 0.40 13.27 0.18 7.51

Table 5: Feature comparison for different parts of speech. As the obtained dataset

predominantly consists of nouns, the regressor is trained using training dataset only

containing nouns. This way, the testing dataset contains enough samples of non-nouns

to show a meaningful analysis. The number of testing samples for each part-of-speech

is given in brackets. The dataset consits of 587 words and 5,000 images each. The

bold results indicate the best result per part-of-speech.

Feature Noun (32) Adjective (33) Adverb (18) Verb (11) Other (24)

Corr. MAE Corr. MAE Corr. MAE Corr. MAE Corr. MAE

L1: Color 0.31 11.38 0.64 14.45 0.32 31.51 0.85 19.07 0.20 33.17

L2: SURF 0.35 11.02 0.27 18.32 0.14 33.35 0.90 20.35 0.27 31.45

L3: GIST 0.40 11.15 0.36 17.28 −0.02 32.33 0.89 20.27 0.43 29.57

H1: Theme 0.67 8.69 0.50 16.31 0.56 29.11 0.85 17.71 0.85 30.99

H2: Content 0.38 11.07 0.23 17.07 0.35 36.46 0.81 22.44 0.00 36.12

H3: Comp. 0.35 11.28 0.36 17.13 −0.10 37.83 0.56 25.91 0.28 34.06

Low-level 0.42 10.36 0.65 14.68 0.02 31.59 0.77 19.90 0.32 31.40

High-level 0.60 9.05 0.47 16.36 0.51 28.31 0.76 17.81 0.49 30.78

Proposed 0.65 9.17 0.53 15.42 0.29 29.08 0.79 18.13 0.60 30.47

Text [28] 0.70 10.36 0.74 13.63 0.25 34.81 0.63 22.69 0.39 33.25

shown in Table 1, the high-level feature H1 shows the best performance as a single

feature. As the model for Table 5 is trained using only nouns, it is no surprise, that the

nouns have the smallest error. The hardest parts-of-speech to predict are adverbs and

other, the latter one containing very non-visual terms like stop-words, conjunctions,

and prepositions.

An example of some actual outputs of the proposed method is shown in Table 6,

which compares the ground-truth annotations to the predicted values for a selection

of words. The three sections show words from the testing dataset, analyzing the re-

sults for high-imageability words, low-imageability words, and some outliers where

the prediction failed, respectively. The examples show a close resemblance to the
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Table 6: Prediction results of the proposed method. The predicted results and ground-

truth annotations of a selection of high-imageability words, low-imageability words,

and some outliers where the prediction failed, are shown. Either values are normal-

ized to the interval of [100, 700] to match the seven-level Lickert scale of the ground-

truth datasets.

Word Predicted value Ground-truth annotation

High-imageability

breakfast 591 628

leaf 613 607

plant 612 605

coast 607 588

pool 570 577

Low-imageability

early 390 391

random 405 370

challenge 438 396

need 377 326

break 459 397

Outliers (Worst 5)

fauna 577 270

review 319 493

silver 439 620

email 487 630

plastic 507 640

ground-truth values, successfully predicting between Likert-scale levels of accuracy.

The worst five outliers can show, that even in a wrongly predicted case, rounding to

the next closest level in the Likert scale is usually at most by one or two values off,

preserving the general trend for most words.

To get a better understanding of the correlation between ground-truth values and

the predicted values, Fig. 5 shows a scatter plot of the predicted testing dataset. Com-

paring the results of the proposed method with the comparative method, we can see

that the global trend of each almost match exactly, but shifted along the vertical axis.

Lowly-imageable words are such words that are thought to be harder to estimate

due to their vagueness and abstractness. The scatter plot suggests that the proposed

method works better towards lowly-imageable words, despite the bias of the training

dataset, compared to the text data-mining method from [28]. Note that while the pro-

posed method only uses 469 samples for training, the datasets used in [28] were in

average about a magnitude larger.

6 Discussion

In the previous sections, a method to estimate imageability using visual features has

been proposed and analyzed. In the following, the results shown in Section 5 are

discussed, including the implications that visual feature selection might have for ap-

plications using imageability and multiple modalities.
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Fig. 5: Scatter plot of predicted values. To better understand the correlation between

ground-truth values and predicted values, this scatter-plot shows predictions from the

testing dataset. The labels on the horizontal axis is sampled across the dataset to get a

feeling from which kind of word lies where on the spectrum. For comparison, values

from the comparative method 2 (Text data mining) [28] are also plotted. All values

are normalized to the range of [100, 700] to match the seven-level Lickert scale of

the ground-truth data.

6.1 Performance and feature selection

In the best feature selection, the proposed method yields a mean average error of

10.14 with a correlation of 0.63. Note that the error is relative to a regression to a

range of [0,100] for understandability of the results. As most Psycholinguistic based

ratings are often expressed in a Lickert scale, the results in Table 6 are converted to

the range of [100, 700] to match the ground-truth annotations. As shown, the error

is smaller than one level on the Lickert scale, meaning that in average it successfully

predicts the correct level of imageability. The number of evaluated words also ensures

that the method is stable for a high variety of words. This means, it can be used

as a tool to expand imageability dictionaries in an automated manner using image

crawling and data-mining. In contrast, our previous work [24] has only been evaluated

on a small number of nouns within the same domain, and thus yielded a much higher

error on the much higher scale of this dataset, including words across various domains

and topics.
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When evaluating the feature selection for different sub-groups of test data, the

experiments led to interesting results. The error for abstract words is consistently

higher than for concrete words. This is unsurprising, as abstract words are much

more vague by nature, and thus are commonly harder to grasp, even for humans. The

low-level features ought to capture characteristics as seen by the machine, while high-

level features encode characteristics as seen by the human. We initially expected that

this would directly correlate to the performance for high-imageability words vs. low-

imageability words. While single features show mixed results on this, the combined

feature sets using only low-level features or only high-level features confirm this

assumption. The low-level features work better for predicting abstract terms, as they

capture global concepts of the pictures, including atmosphere and mood. In contrast,

the high-level features work better for concrete terms, which are often actual objects

within each image. Looking at the information actually encoded within each visual

feature, we can infer why they excel for different categories of words, as follows.

The Color feature captures the atmosphere of the image set. Even if the images

otherwise show few visual resemblance, this feature can capture common warm or

cold colors, for example. Additionally, abstract terms can often include technical

figures or diagrams, containing lots of white background. This way, color turns out

to be a good choice for very abstract terms, where other visual feature can not find

much similarity. The image theme and content features encode actual objects in the

images. This makes them candidates for high-imageability words, as they are often

connected to concrete objects and many images share similar objects.

When comparing the correlation results, it is noteworthy that there is a high cor-

relation in the overall results shown in Table 1, and comparatively lower correlation

when evaluating only abstract or only concrete words (as shown in Table 4). This

indicates that the general trend of high- vs. low-imageability words can be predicted

successfully, but the order of words within each group is harder to predict. This is

due to the limitations of the seven-level Lickert scale of the ground-truth annotations.

When looking at the dataset, many concrete terms are clustered closely around the

score 6, while most abstract annotations are clustered around 3. Therefore, a small

prediction error can reduce the correlation of close-by words, while the overall gen-

eral trend is preserved.

Analyzing parts-of-speech, it is noteworthy that the words in each category show

rather mixed characteristics. While adjectives and adverbs seem intuitively highly im-

ageable, as they increase information and context, they are often hard to put in visual

context. For example, the word red can be directly expressed with visual features

(most prominently, the Color feature), while words like good can not be matched

to certain visual characteristics. The results also show, that some categories have a

higher error than others. The category other contains words like because and how-

ever, whose datasets result in mostly random images. It is also noteworthy that the

dataset predominantly consists of nouns, and thus the model was trained on only

nouns.
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6.2 Comparison to other methods

When comparing the results to our previous method [24], the proposed method shows

a major improvement for the regression of imageability.

One thing worth mentioning is the goal of each paper. This paper focuses on

imageability as a pre-existing concept, and proposes a method to regress given im-

ageability scores from Psycholinguistic research as closely as possible. In contrast,

the previous work was intended to measure slight differences of variety in direct

comparison of words within the same domain. Therefore, the previous work excels

in measuring the gap between sports car, car, motor vehicle, and vehicle. Such a

detailed cross-comparison of words often makes less sense on the scale of a full dic-

tionary, as a seven-level Lickert scale would not contain detail for this. Therefore, we

regard both works as complementary approaches for different purposes.

When looking at the results shown in Table 1, it is clear that the previous method

did not work for imageability. This has several reasons: First, recall that our previous

method heavily relied on a modified custom dataset to create the ideal composition

for further processing. This was unfeasible for a dataset with more than a few dozens

of words, and is also complicated when crossing multiple domains. Next, the data-

mining of the previous method relied on mean-shift clustering on top of a single visual

feature. When analyzing words across different domains, it is hard to find a reference

point for the number of clusters. While car has obviously more clusters than sports

car, the relationship of clusters when comparing unrelated terms is not well defined.

Thus, comparing the number of clusters between car and pizza will not give mean-

ingful results. In contrast, the cross-similarity of images used for the approach pro-

posed in this paper is a well-defined concept, even across different domains. On top

of that, the variety of newly introduced visual features ensure a broader view on the

data from additional angles. The results show that the features can complement each

other, which is especially important as low-imageability words and high-imageability

words show very different visual characteristics.

When comparing to Ljubešić et al. [28], the evaluation shows that both text-only

and image-only approaches can have different strengths. For the overall results, the

proposed method using only visual analyses has a better MAE, while the textual ap-

proach by Ljubešić et al.[28] has a better correlation. This suggests that the predicted

labels of the proposed method are closer to their ground truth, while the correct order

might have some flipped results. On the other hand, the textual analysis have most

results in a more correct order, while the actual error of outliers might be higher.

This is especially true for the experiment splitting abstract and concrete words. Due

to the nature of imageability being on a seven-level Likert scale, closely imageable

words are very hard to rank in order, even for a human. On top of that, the dataset

is biased towards the concrete end with the testing dataset having an average score

of 70 of 100. As such, we believe that a correct order is vague and the general trend

of predicted scores is the more important for many applications. Note, though, that it

might heavily depend on the application, whether the correlation or the MAE is the

better metric.

Another interesting result is that the textual analysis is better for concrete terms,

while the visual analysis yields better results for low and mid-imageability terms.
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These results are probably also strengthened by the proposed method intrinsically

focusing on noise analysis. Thus, concepts with a high visual variety usually being

highly abstract.

In terms of computational complexity, the proposed method using visual features

took in the order of magnitude of several weeks for processing 5,000 image/word for

586 words. For this, the feature extraction was the major bottleneck. Note that, due

to it being a pre-processing step only performed once, it was not further optimized.

In contrast, the histogram comparisons and training took in the order of magnitude

of a few hours for the full evaluation. Due to the results not being time-critical, there

were no further evaluations or optimizations made.

The text-only approach proposed by Ljubešić et al. [28] was not trained by our-

selves, so it is hard to compare the computational complexity directly. Their paper

does not comment on the computational complexity of their approach either. How-

ever, due to the nature of image vs. text processing, we would assume that a text

mining approach would be slightly faster computational-wise. On the other hand, the

evaluations showed that the visual analysis has advantages for certain words. Espe-

cially for more abstract terms, the scatter plot as well as the MAE show some ad-

vantages for the visual approach, while the textual approach can usually yield better

correlation. For more concrete terms, surprisingly, the opposite is true. Therefore, a

visual data mining in addition to a textual analysis can be an effective way to improve

the accuracy of the imageability estimation. As such, for future research, we plan to

try a combined method analyzing both textual and visual features of co-existing text

and images.

6.3 On the dataset

The results show that increasing the number of images for each word increases the

performance. This seems intuitive, as more images equal to more data to be mined,

and thus potentially more retrievable information. An increased number of images

can also make the results more robust to noise. As far as complexity goes, the visual

feature extraction scales linearly with the number of images, while the similarity

matrix and histogram comparisons have quadratic complexity. The dimensionality of

the visual features as well as the number of training samples have only major impact

when choosing a Neural Network for regression, as the impact is negligible for the

other methods.

Keeping this in mind, research by Sun et al. [43] suggests that there is no upper

limit for improving machine-learned models by increasing the amount of data, just a

logarithmic diminishing return. Therefore, and due to the increased processing time,

we have not further increased the number of images, although it can be assumed that

the error can be decreased by further increasing the dataset.

The number of words, on the other hand, seems to be sufficient to ensure stability

within the prediction. Experiments with changing the number of training samples

led to roughly similar results, which suggests that the number of data is sufficient

to yield stable prediction. Note that the experiments were performed in the order of

crawling, as more and more words became available with sufficient number of images
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in their image set. This, however, means that the dataset with more samples also

would include images for harder-to-crawl words, which could potentially decrease

the performance through noise or word difficulty.

Lastly, we will summarize a few limitations and potential issues of the dataset

creation process presented in this paper. The switch from a re-composited custom

dataset in our previous work [24] to a direct crawling of crowd-sourced data had a

variety of advantages, and makes for a vastly increased number of both words and

images to evaluate. However, as a downside, the resulting dataset can become more

noisy and potentially much more biased. As Flickr, in essence, is a Website for pro-

fessional photographers, the images can be biased towards things photographers see

as art, not fully capturing a neutral view on the concepts.

Looking at the outliers presented in Table 5, it also shows some points where us-

ing Flickr image for the results might not fit the expectation. Words like fauna result

in many images in jungles, zoos, or similar backgrounds appealing to photographers.

As such, they are visually rather similar, resulting in a high imageability prediction.

The ground-truth annotation, however, is rather abstract, as the term is usually asso-

ciated with biology, making it a rather hard and sciency word. In contrast, words like

email or plastic result in rather noisy datasets, as it is not really clear, what kind

of photos people would upload, tagged with these words. As a result, the prediction

for both is midly imageable. In the ground-truth annotation, however, these are con-

sidered highly imageable, mostly because they are considered to be objects, or rather,

in case of e-mail, with a concrete thing people often deal with.

Another downside is that it is hard to obtain single images for parts-of-speech like

conjunctions, verbs, and stop-words. The nature of these types of words unavoidably

results in the image data of these words to be random images or non-related. Note that

many conjunctions and stop-words are naturally rather abstract and lowly imageable,

so the data-mining will potentially still lead to good results for these terms, especially

because of its random nature. Similarly, the current method makes no difference

between ambiguous meanings. As such, the image set for craft might be a mixture

of handcraft, aircraft, and watercraft (which arguably makes the term rather abstract

due to the ambiguity).

6.4 Applications

As discussed previously, the proposed method can be used to expand the vocabulary

for imageability dictionaries for the general language. Due to the predicted labels in

average rounding on the correct level on the Likert scale, we believe that the proposed

method is sufficiently accurate for automatic creation of extended dictionaries. While

a majority of existing datasets focus on nouns, the proposed method works for any

type of part-of-speech. As the method relies on analyzing a set of images, it would

also be possible to create datasets for proper-nouns, like names or places, for which

by nature no entries in imageability dictionaries exist. While proper nouns are not

commonly looked at in psycholinguistics, the possibility of creating ratings for such

words would be beneficial for word selection tasks in image captioning and the simi-
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lar. Lastly, it could also be extended to evaluations for other Psycholinguistic ratings,

including sentiments.

When looking at image captioning [1], the results could be used to evaluate the

understandability of generated text captions. Comparing text and image, concrete de-

tails and abstract concepts often supplement each other. An additional knowledge of

this could yield a metric to assess the quality of auto-generated captions. Thus, in fu-

ture research, it could be used to assess the accessibility, or the degree of information,

in auto-generated texts.

As a metric, the measurements can be used for model understanding, which be-

came important in recent years when considering the popularity of Neural Networks

and the downsides of black-boxed methods. Furthermore, the results could be in-

cluded in tools and datasets for NLP and sentiment research, like Empath [15], as

they provide additional insight on semantic text understanding.

7 Conclusion

In this paper, we proposed a method using image-based data mining with a variety of

low-level and high-level visual features to estimate imageability scores for words. In

previous research, most imageability dictionaries have been created by hand, through

user studies or crowd-sourcing. This labor-intensive process results in small data sam-

ples compared to the full word corpora of languages.

The evaluations show a mean absolute error of 10.14 and a correlation of 0.63

for the best feature combination. This shows that the results correlate to the ground-

truth Lickert scale, especially as the error is less than one level on the Lickert scale.

Furthermore, the evaluations give us an insight on which features excel for which

type of words. In a general trend, the low-level features worked better for abstract

words, while the high-level features worked better for concrete words. This is due

to concrete terms often being related to objects, while abstract terms can only be

estimated by encoding the general visual trends of atmosphere, gradients, and dataset

noise.

The proposed method is intended to be used to expand the vocabulary in im-

ageability dictionaries. An implementation and pre-trained model of the proposed

method will be made available on GitHub 4. There are also opportunities to integrate

them in multimodal applications like sentiment analyses. Another possible applica-

tion which comes to mind is quality assessment of auto-generated image captioning

results. There, results could be assessed differently, depending on whether they are

used for complementary information, accessibility purposes, or other use-cases.

For future research, it would be interesting to combine our analysis towards the

analysis of visual characteristics for imageability estimation with existing methods

using text data-mining for imageability and concreteness estimation to get a more

round image of visual and textual meta-data contributing to the mental image of con-

cepts. Furthermore, we want to expand the dataset furthermore. An analysis across

multiple languages would be interesting, as imageability dictionaries already exist

4 https://github.com/mkasu/imageabilityestimation/
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for other languages than English, like Indonesian [41], Cantonese [51], or Japanese.

Lastly, we want to add other types of both low- and high-level visual features, to see

if they can further improve the results.
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