

On the quantification of the mental image of visual concepts for multi-modal applications

Marc A. Kastner (NII), I. Ide, Y. Kawanishi, T. Hirayama, D. Deguchi, H. Murase (Nagoya Univ.)

mkastner@nii.ac.jp

https://www.marc-kastner.com/

Background

- Semantic gap problems
- Missing information between computer representation and human perception
- Often an issue in word choice problems and resulting in unnatural results
- Psycholinguistics looks at perception of words
- Up to nine different measures per word ...
- ... but dataset creation is manual and labor intensive

In my doctoral studies I analyzed the mental image of concepts for use in multimedia modeling

Sub-concept Popularity

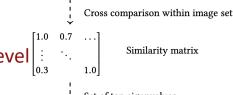
used-car

9.2%

6.7%

Core ideas

- Try to quantify semantic gap before solving it
 - Use visual data mining to estimate visual variety differences across datasets
 - Estimate perception of concepts without manual labor needed
- **Applications**
 - Word choice problems like retrieval or tagging
- Increase vocabulary of psycholinguistics dictionaries


Absolute measurements

- Idea: Data mine visual features for words in an imageability dictionary
- Score words from 1 (unimageable) to 7 (imageable)
- Regress such a scoring using images
- Proposed method: Gain visual information across low- and high-level features
- Low: Patterns Feature (1 = best)(0 = best)or colors L1: Color histograms 11.30 0.54 11.48 High: Objects L3: GIST 0.42 12.05 H1: Image theme (YFCC100M-based) 10.19

Combined (Proposed method)

Local visual variety approach [3]

or concepts H2: Image content (YOLO-based) H3: Image composition (YOLO-based)

0.43

Similarity matrix

Set of top eigenvalues

Input:

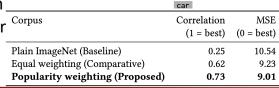
Visual feature extraction

Histogram

n images for a term x

Regressor

Regression of imageability


Output: Imageability for x

10.14 cat $\in [100, 700]$

Idea: Data mine visual features to quantify feature variety across related words

Relative measurements

- E.g. compare variety of car vs. sports car vs. vehicle
- Analyses quickly showed bias in existing datasets
- Proposed method: Improve dataset by recomposing existing datasets
- Create hypernym datasets based on their hyponyms
- Use a Web-based ratio to determine composition
- Lastly, cluster feature space to determine number of visually distinct concepts

