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Background

= Semantic gap problems
Missing information between computer representation and
human perception
Often an issue in word choice problems and resulting in
unnatural results

Psycholinguistics looks at perception of word:
Up to nine different measures per word ... 7
... but dataset creation is manual and labor intensive
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In my doctoral studies | analyzed the mental image of —t
concepts for use in multimedia modeling
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Abstract

Relative measurements

= |dea: Data mine visual features to quantify feature
variety across related words

E.g. compare variety of car vs. sports car vs. vehicle
Analyses quickly showed bias in existing datasets

Proposed method: Improve dataset by recomposing
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existing datasets
Create hypernym datasets based on their hyponyms
Use a Web-based ratio to determine composition

Core ideas

" Try to quantify semantic gap before solving it
Use visual data mining to estimate

visual variety differences across datasets an
* Estimate perception of concepts A - =
without manual labor needed | ‘ | =
= Applications | | ] ]

Word choice problems like retrieval or tagging
Increase vocabulary of psycholinguistics dictionaries

Absolute measurements

| |
Visual feature extraction

Input:
n images for a term x

Idea: Data mine visual features for
words in an imageability dictionary
Score words from 1 (unimageable)

to 7 (imageable) w
Regress such a scoring using images %cﬂm comparison within image set
Proposed method: Gain visual
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Lastly, cluster feature space to determine number

of visually distinct concepts
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