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Mental image of concepts

• Peaceful
• Different backgrounds
• Different contents
à Low value

• Leaf
• Always same “object”
• Always in forest
à High value
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Research motivation

• Mental imagery
• “Visual experience of a concept […] from memory”
• In this context, the common perception across society

• Imagine two concepts like “peaceful” and “leaf”
• Are they equally hard to visually imagine?
• Which is more abstract or more concrete?

• Goals
• Modeling the quantization of a mental image of a concept
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Example applications

• Visual diversification [1]
• Increase variety of image 

retrieval results

• Multi-modal approaches using text + image [2]
• Analyzing relationship of slogan and image for 

advertisements

• Language processing [3]
• Can help when learning translations in machine 

translation models
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1: Reinier H. van Leuken et al. Visual diversification of image search results. WWW 2009.
2: Zhang et al. Equal But Not The Same: Understanding the implicit relationship between persuasive images and text. BMVC 2018.
3: Hewitt et al. Learning translations via images with a massively multilingual image dataset. ACL 2018.



Core idea

• Assumption
• Images on the Web somewhat reflect the common

mental image members of our society have of a concept
• E.g. if crawling many images of leaf, we get a reasonable 

average mental image of leaf

• Possible approaches
• Relative measurement: Estimate relative perception 

differences of similar words

• Absolute measurement: Estimate absolute values for 
arbitrary concepts
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Research Target

• Estimate visual variety of concepts within same domain
• Relative measurement
• For direct comparison, relative to another
• E.g. Sports car <-> Car <-> Airplane <-> Vehicle

• Data-driven approach creating ideal
datasets for the measurement

• Usable for word selection problems
• But, hard to quantify Vehicle <-> Pizza because of missing 

reference point
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Research Target

• Estimate imageability of words on a dictionary level
• Absolute measurement
• For global trend of abstract vs. concrete
• E.g. Random <-> Peace <-> Airplane <-> Pizza

• Algorithm-driven approach using supervised learning

• Usable for text difficulty, abstractness of text, etc.
• But, scale not granular enough to be used for Sports Car <-> Car
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Estimation of visual variety of concepts

Target: Relative measurements in same domain
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Research 1

My first Japanese talk at CVIM two years ago!
カストナーマークアウレル, 井⼿⼀郎, 川⻄康友, 平⼭⾼嗣, 出⼝⼤輔, 村瀬洋, 
Web画像の分布に基づく単語概念の視覚的な多様性の推定. CVIM 2018.03



1. Extract visual features of images (Bag-of-Words)
2. Cluster feature space
3. Variety = Number of clusters
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Core approach

Visually variant concepts have more clusters!

Visual variety
= 10

Research 1: Local visual variety of words on domain-level



Biased data

• Naïve:
• Extract visual features
• Cluster the visual feature space
àThe number of clusters express variety!

• Looking closer at datasets like ImageNet[6]
• Very biased composition
• Vehicle largely consists of military vehicles
• Does not reflect reality!

• We need to create a “proper” dataset!
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Visual variety  = 10

6: J.D.J. Deng et al. ImageNet: A large-scale hierarchical image database. CVPR 2009.

Research 1: Local visual variety of words on domain-level



Ideal dataset

• Of course, a mental image is very subjective…

• But in general, the dataset composition should
probably reflect the distribution in real life:
• Rare sub-concepts à Few images

(For vehicles, few tanks)
• Common sub-concepts à Many images 

(For vehicles, many cars)

• Recreate datasets based on this idea!
• Compose abstract concepts’ datasets using images of 

their sub-concepts reflecting “natural” distribution
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Research 1: Local visual variety of words on domain-level



Dataset creation

• Recompose dataset !! from sub-
concept images " using Web 
popularity weighting #
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Popularity weighting
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• Retrievable with Google API
• Number of search results for a term
• Separate API and results for Google Text and Google Image

• Use this to decide ratio for dataset composition

Idea:

Research 1: Local visual variety of words on domain-level



Dataset creation (2)
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Re-composited dataset for car

Google Image 
Results

sports car 27.4%
racer 9.2%

Model T 8.8%
coupe 6.9%

used-car 6.7%
jeep 5.0%

beach w. 4.8%
compact 4.5%

cab 3.9%
convertible 3.5%
hatchback 2.7%

minivan 1.3%
ambulance 1.4%

Pictures of: Jeep Pictures of: Sports car

…

Research 1: Local visual variety of words on domain-level



Experiment

• Implementation
• Visual features: Bag-of-Visual-Words (SURF)
• Clustering: Mean-Shift

• Results à Normalized number of clusters

• Ground-truth
• Through crowdsourced survey: 4,529 pair comparisons [7] 

from 158 people via social media

• Evaluation metrics
• Spearman’s Rank Correlation
• Mean Squared Error (MSE)
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Research 1: Local visual variety of words on domain-level

7: L. L. Thurstone. The method of paired comparisons for social values. J Abnorm Psychol 1968.



Dataset for car (Example)
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Equally
weighted

Web popularity
weighted

Sports car 27% Racer 9%

Coupe 7%

Model T 9% Jeep 5%

Sports car 5% Racer 5% Coupe 5%

Model T 5%

Jeep 5%Used-car 5%

Used-car 7%

Proposed

Comparative

Research 1: Local visual variety of words on domain-level



Results

• Baseline does not correlate at all
• Proposed method 2 improves correlation by 192% over the 

baseline and 17.7% over the comparative method.
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Dataset Rank 
correlation

Mean Squared 
Error (MSE)

Baseline (Original ImageNet) 0.25 10.54
Comparative (Re-compose with equal weighting) 0.62 9.23
Proposed 1 (Re-composed with Google Text weighting) 0.56 14.89
Proposed 2 (Re-composed with Google Image weighting) 0.73 9.01

Research 1: Local visual variety of words on domain-level



Examples
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Summary

• Analyzing local visual variety differences of words 
within the same domain
• Using a dataset-driven approach to estimate human 

perception of visual concepts
• Established ground-truth results with a crowd-sourced 

survey (n = 158)

• Proposed method improves correlation by 192% over 
the baseline and 17.7% over the comparative method
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Estimation of word imageability

Target: Absolute measurements on dictionary-level
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Imageability of words

• Concept from Psycholinguistics [1]
• Quantize the perception of words
• Often described on Likert scales

• Unimageable <-> Imageable or Abstract <-> Concrete

• Is a concept imageable? Do you have a mental image 
when thinking of a concept?
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Unimageable (Abstract) Imageable (Concrete)

Vehicle CarPeacefulSomething
(1.6) (3.4) (5.5) (6.7)

1: Pavio et al. Concreteness, imagery, and meaningfulness values for 925 nouns. J Exp Psych 1968.

⼼像性
Research 2: Imageability of words on dictionary-level



Motivation

• While there are existing imageability dictionaries
• Datasets are small (< 6000 words)
• Most dictionaries are created by hand

• Extension is very labor intensive
• Data often republished or reshuffled, but rarely increased

• Idea: Estimate imageability scores to extend 
existing dictionaries by analyzing visual data
• Use core assumption of research 1 
• Train a model for imageability estimation
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Research 2: Imageability of words on dictionary-level



Purpose

• Estimate an imageability score for a word based on its 
visual characteristics
• Analyze images crawled for each word
• Train regression model to estimate the score based on 

visual features
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Input: 
Images for “leaf”

!!"#$ ∈ [1,7] Output: 
Imageability score for “leaf”

Analysis

Research 2: Imageability of words on dictionary-level



Approach
Extracting visual features

• For each word, crawl image data from social media
• Then, extract visual features from each image
• E.g. Color histograms, Bag-of-Visual-Words histograms, ...
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Crawled images for “leaf”

Per visual feature 2(

Feature vector for 
each image &3

Research 2: Imageability of words on dictionary-level
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Approach
Cross comparison of images

• Cross-compare all images of same word
• Create similarity matrix containing similarity 

between all image pairs
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Using visual feature 
histograms

Cross comparison between
all images for “leaf” 
(using histogram similarity)

5( = 6 4( 2( , 4, 2( , … , 4+ 2( =
1.0 0.3 ⋯
⋮ ⋱ ⋮
0.7 ⋯ 1.0

Similarity matrix 
per visual feature '3

Research 2: Imageability of words on dictionary-level



Approach
Regression model

• Random forest based on visual characteristics
• Train model on eigenvalues of similarity matrix
• Use imageability dictionary as ground-truth

27!!"#$ ∈ [1,7]
Output: 

Imageability for “leaf”

5( =
1.0 0.5 ⋯
⋮ ⋱ ⋮
0.1 ⋯ 1.0

Random 
Forest

Similarity matrix
for each visual feature

5, =
1.0 0.3 ⋯
⋮ ⋱ ⋮
0.7 ⋯ 1.0

Imageability
dictionary

Train on eigenvalues
X

Y

Y’

Research 2: Imageability of words on dictionary-level
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Input: 
Images for “leaf”

!!"#$ ∈ [1,7]
Output: 

Imageability for “leaf”

For each visual feature 2(

Feature vector for '3

Cross comparison between
all images for “leaf”

5( =
1.0 0.3 ⋯
⋮ ⋱ ⋮
0.7 ⋯ 1.0

Random 
Forest

Similarity matrix

Regressor

Train on eigenvalues

Imageability
dictionary

Research 2: Imageability of words on dictionary-level
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Visual features

• Low-level (Traditional computer vision)
1. Color histogram (HSV)
2. Bag-of-Visual-Words (SURF)
3. GIST descriptors

• High-level (YOLO-based)
1. Image theme (e.g. Indoor, Architecture, Park, …)
2. Image content (e.g. 2 people, 1 dog, 2 signs, ..)
3. Image composition (e.g. 3 objects in edges, 1 in center)
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Research 2: Imageability of words on dictionary-level



Experiment

• Objective: Predict imageability for a set of words
• Using dataset of 587 words and 5,000 images each

• Ground truth -> Imageability dictionary [8, 9]
• Images -> YFC100M [10]

• Evaluation metrics
• Pearson Correlation
• Mean Absolute Error (MAE)

• Methods:
• Proposed: Visual data mining
• Comparative: Text data mining [11]
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8: Cortese et al. Imageability ratings for 3,000 monosyllabic words. Behav Res Method 2004.
9: Reilly et al. Formal distinctiveness of high- and low-imageability nouns: analyses and theoretical implications. Cogn Sci 2007.
10: Thomee et al. YFCC100M: The new data in multimedia research. CACM 2016.
11: N. Ljubesic et al. Predicting  concreteness  and  imageability  of  words  within  and  across  languages  via  word  embeddings. 3rd Workshop 
on Representation Learning for NLP 2018.

Research 2: Imageability of words on dictionary-level



Evaluation: Results

• Estimating imageability for test data
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Feature Correlation MAE
Combined (Low) 0.60 11.03
Combined (High) 0.61 10.18
Combined (All) 0.63 10.14
Comparative (Text data mining [8]) 0.70 10.39

Research 2: Imageability of words on dictionary-level

Feature Abstract only Concrete only
Corr. MAE Corr. MAE

Combined (Low) 0.32 10.90 0.16 11.37

Combined (High) 0.27 11.31 0.10 9.10

Combined (All) 0.26 10.79 0.17 10.11

• Splitting test-data in abstract vs. concrete words
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Evaluation: Examples

Research 2: Imageability of words on dictionary-level

Text data mining (Comp.)

Image data mining (Prop.)

Ground truth

Plant = 612 (GT: 605)

Pool = 570 (GT: 577)

Random = 405 (GT: 370)

Early = 390 (GT: 391)



Summary

• Proposed a method to estimate the imageability 
of words on dictionary level
• By analyzing the visual characteristics of Web-crawled 

images from social media

• Estimated imageability with an error of 10.14% and a 
correlation of 0.63
• Results are similar to solely text-based approaches, but 

fusing both might further improve results towards better 
correlation
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Research 2: Imageability of words on dictionary-level



Research summary

• During my doctoral studies, I quantized the perception and 
mental image of visual concepts

• Local visual variety on the same domain
• Verified a high correlation on 21 terms related to vehicles
• Sports car <-> Car <-> Ground vehicle <-> Vehicle

• Global imageability on dictionary-level
• Low error and good correlation for a dataset with 587 words
• Interesting results when playing with low-level vs. high-level 

features for abstract vs. concrete words.
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Research 1

Research 2



Summary of my Doctoral studies

• Proposed idea of using visual variety for mental 
image modeling

• Main assumption: Connection between mental 
image and Web-crawled image sets
• Verified by results of both Research 1 and 2
• Image sets can be used to both replicate and augment 

results from Psycholinguistics

• Different visual characteristics contribute to mental 
image of different concepts
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Thank you for your 
attention!

Questions?

https://www.marc-kastner.com/                                @mkasu
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