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* Concept from Psycholinguistics [1]
e Quantize the perception of words

e Often described on Likert scales
 Unimageable <->Imageable or Abstract <-> Concrete

* |s a concept imageable? Do you have a mental image
when thinking of a concept?

Something Peaceful Vehicle Car
| (1.6) | (3.4) (5.5) (6.7)
= _ D
unimageable imageable

1: Pavio et al. Concreteness, imagery, and meaningfulness values for 925 nouns. J Exp Psych 1968



Applications of imageability

* Imageability is used in Psycholinguistics research
* Influences how children learn and use grammar [2]

* Multi-modal approaches using text + image

* Analyzing relationship of slogan and image for
advertisements [3]

2: Smolik et al. The power of imageability: How the acquisition of inflected forms is facilitated in highly imageable verbs and nouns
in Czech children. J First Lang 2015
3: Zhang et al. Equal But Not The Same: Understanding the implicit relationship between persuasive images and text. BMVC 2018



Motivation

* There are existing imageability dictionaries for
English, Japanese and some other languages
e Datasets are small, only for a few thousand words

* Most dictionaries are created by hand

* Extension is very labor intensive
* Data often republished or reshuffled, but rarely increased

 |dea: Estimate the imageability scores to extend
existing dictionaries by data-mining



Why use images?

* Imageability: How an average person imagines
concepts (mental image)

* Social media: How common people self-annotate their
perceived world by uploading images

* Core assumption

* Relationship between imageability of words and visual
characteristics of crowd-sourced images from social media

Crowd-sourced images from people
=> Average mental image



Purpose

* Estimate an imageability score for a word based on its
visual characteristics

* Mine image-data crawled for each word

* Train regression model to estimate score based on visual
features

Input:
Images for “leaf”

Data mining

Output:

Leat € [1r7] . " )
Imageability score for “leaf



Approach

Extracting visual features

* For each word, crawl image data from social media

* Then, extract visual features from each image
* E.g. Color histograms, Bag-of-Visual-Words histogrames, ...

Crawled images for “leaf”

Histogram for
each image




Approach

Cross comparison of images

e Cross-compare all images of same word

* Create similarity matrix containing similarity
between all image pairs

% \4 { Using visual feature
R o i .
= ) histograms
‘ -

Cross comparison between
all images for “leaf”

\ (using histogram similarity)
[1;0 03 ] Similarity matrix
0.7 1.0 per visual feature



Approach

Regression model

 Random forest based on visual characteristics
* Train model on eigenvalues of similarity matrix
* Use imageability dictionary as ground-truth
[1;0 05 [1;0 0.3 ] Similarity matrix
. 1.0

. for each visual feature

0.1

1.0 0.7

Imageability Random
dictionary Forest

l Output:
Neat € [1,7] Imageability for “leaf” °




Input:
Images for “leaf”

l For each visual feature

Histograms
Cross comparison between
aII images for “leaf”
1.0 03 - o ,
L. Similarity matrix
0.7 1.0

J Train on eigenvalues

Imageability N Random Regressor
dictionary Forest

l Output:
feat € [1,7] |mageabl|lty for “leaf”



Experiment

* Objective: Predict imageability for a set of words

* Using dataset of 577 words and 5,000 images each
* Training: 462 words, Testing: 115 words

e Evaluation metrics
* Mean Average Error
e Pearson Correlation



Experiment: Datasets

* Imageability dictionary for ground-truth
 Merged from [4] + [5]
e Score from 1.0 (unimageable) to 7.0 (imageable)

* Image dataset
e Using YFCC100M [6] data (based on social media Flickr)

* Crawled all images where a word from dictionary
appears in meta data (such as title, description, tags)

4: Cortese et al. Imageability ratings for 3,000 monosyllabic words. Behav Res Method 2004
5: Reilly et al. Formal distinctiveness of high- and low-imageability nouns: analyses and theoretical implications. Cogn Sci 2007
6: Thomee et al. YFCC100M: The new data in multimedia research. CACM 2016



Experiment: Visual features

1. Color histogram

* Overall color distribution
based on HSV color space

2. Bag-of-Visual-Words using

SURF descriptors

e Local feature transformation,
used for object detection

* Encoding shared patterns

https://towardsdatascience.com/bag-of-visual-

words-in-a-nutshell-9ceea97ceOfb 13



Experiment: Visual features

3. GIST descriptors

* Global gradients within images
e Often used for scene analyses

http://ilab.usc.edu/siagian/Research/Gist/Gist.html
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Evaluation: Results

* Estimating imageability for test data
* Normalized to [0,100] for understandability

(1) Color 11.78 0.56
(2) BoVW/SURF 12.53 0.55
(3) GIST 13.09 0.45

Combined 11.68 0.62



Evaluation: Examples

* A selection of low- and high- imageability words
* Interval [100,700] for comparison with ground-truth

Tvbe Predicted value
P (Ground-truth)

o N coast 5.78 (5.88)
High imageability
dusk 5.85 (5.75)
: . doing 3.07 (2.50)
Low imageability
review 4.22 (3.20)
fauna 5.35(2.70)

Outliers
e-mail 4.44 (6.70)



Discussion

* Tendency of imageability is correct for majority of
words

* Features can complement each other to improve
overall performance

 Method works better for high-imageability words
* More abstract concepts are harder to grasp
* More visual features are needed



Conclusion

* Proposed a method to estimate the imageability
of words

* By analyzing the visual characteristics of Web-crawled
images from social media

e Estimated imageability with an error of 11.68%

e Future work
* Increase size of dataset
* Use high-level features in addition to low-level features

A https://www.marc-kastner.com YW @mkasu



