NS-03 On Quantizing the Mental Image of Concepts for

Visual Semantic Analyses

Marc A. Kastner (Nagoya University) ™ kastnerm@murase.is.l.nagoya-u.ac.|p

& https://www.marc-kastner.com/

Background Core ideas

B Semantic gap problems
e Missing information between computer
representation and human perception
e Often anissue in word choice problems
and resulting in unnatural results

B Psycholinguistics looks at perception of words!!
e Up to nine different measures per word ...

e ... butdataset creation is manual and labor intensive

B Try to quantize semantic gap before solving it

e Use visual data mining to estimate variety
differences across different datasets

e Estimate perception of concepts
without manual labor needed

B Applications .
e \Word choice problems like retrieval or tagging

* Increase vocabulary of psycholinguistics dictionaries

In my doctoral studies | use the mental image of
concepts for multimedia modeling.

Visual variety (Topic 1) Imageability (Topic 2)

M Idea: Data mine visual features to quantize B Idea: Apply idea of visual variety on the

feature variety across related words concept of Imageability
— T e Concept coming from Psycholinguistics!!!

e Score words from 1 (unimageable) to 7 (imageable)

e E.g. Compare variety of
car vs. sports car

e Analyses quickly showed - — - ; - Regress imageability scores for words using visual data
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M Proposed method: Improve dataset by Bl Proposed method: Gain visual information

recomposing existing datasets!?
e Create hypernym datasets by '
combining its hyponyms

from mixture of low- and high- IeveI features
e Low: Patterns, Shapes, Colors
e High: Objects, Concepts
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Visualizations (Topic 3) Side projects to visualize datasets in Topics 1 & 2

M Visualize BoVW models across related concepts ~ BBrowsing Visual Sentiment Datasets using

e Highlight shared visual characteristics
across images of related concepts

e Find out which region, e.g., visually
“makes a truck a truck” —

Psycholinguistic Groundings!®!

e Show relationship between
psycholinguistics S
features in textual annotations f.
and sentiment annotations L E —_

e Use text to calculate per-image ~~ ° « b ~fn -

T e sentiment ratings NASe
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