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Motivation Related work

B Background: Black-boxed machine learning
algorithms demand for more data knowledge

e For multi-modal applications, semantics and human
perception needed to understand semantic gap

e Tryto understand how a computer understands

B Visualize contents of Bag-
of-Visual-Words models?
e Which image regions are crucial

for correct classification?
e Create probability heat maps for image regions
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B Interesting findings: Sometimes very unexpected
image regions are most relevant for the classifiers

Newly established field “Explainable Al”! asks for
more understanding of machine learned results

B Reconstruct Bag-of-Visual-Words models3

e |dentify which features are retained in a visual model
e Highlights which regions were crucial for encoding

B |dea: Visualize similarities across related concepts

e Show similar image regions
e Show visual-spatial distribution of images
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B Labeling can be set to children
nodes or sibling sub-trees
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B Mouse-over shows extended

information on data samples

e Raw image, sub-concept name,
imageability labels (if available)

e Bottom image highlights SURF
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Discussion

B Find visually-related groups even if they belong | E=—"1. . .
(o different concents miivan . = keypoints visually common
P ; locaton(0%39, 0278 T3a 05 between neighboring images
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e |n “street vehicles”, “trucks with company logos” are
clustered close to “cars with text” due to text patterns

B Importance of backgrounds

e In “vehicles”, “helicopters” are clustered close to
“airplanes” due to similar features in sky and clouds

B Tool is designed to browse ImageNet concepts
based on visual characteristics in sub-concepts

___ruurework [

B Correlate visual feature space to visual variety
e Compare results to imageability and concreteness

e [nfer imageability from area of visual feature space

B Cross comparison of M Create live demo for

, o o ImageNet subtrees interactive browsing
B Spatial clustering finds visual semantics in a e Compare varietyincar o If possible, publically
unsupervised way types to variety of plants available though Web app
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